Fluoride contamination in groundwater is now becoming a global concern. In the present study, removal of fluoride using dry biomass (DBM) of a micro-algal consortium of Chlorococcum infusionum and Leptolyngbya foveolaurum, collected from a coke-oven effluent treatment plant, Durgapur, India, has been investigated. The large volume of algal bloom in the industrial effluent has created serious disposal issues and caused severe environmental concerns. A biosorption technique has been carried out to valorize the waste algae biomass into a potential adsorbent. Response Surface Methodology (RSM) is used to model and optimize fluoride removal. Maximum fluoride removal (72%) is obtained at pH 4, 5 mg/L initial fluoride concentration, 0.5 g/L adsorbent dose (AD), and 25 °C temperature during one-factor-at-a-time (OFAT) analysis. The optimum condition of removal as specified by RSM is - initial concentration of fluoride: 30 mg/L, pH: 4.5, AD: 3.5 g/L and temperature: 30 °C. FESEM-EDX, FTIR and BET isotherm studies are done to characterize raw and fluoride treated biomass. Lagergren first order kinetic model and Freundlich isotherm model, are found to analyze best kinetic and equilibrium data, respectively. Adsorption capacity of DBM has been found to be 34.36 mg/g. The kinetics of fluoride removal have been well described by COMSOL Multiphysics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.638 | DOI Listing |
Macromolecules
January 2025
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
A series of novel chain-extended polyurethanes (CEPUs) featuring degradable sulfonyl ethyl urethane chain-extenders that permit degradation under base-triggered conditions to afford "debond-on-demand" elastomeric adhesives are reported. Exposure of the CEPUs to -butylammonium fluoride (TBAF) triggered the degradation of the sulfonyl ethyl urethane chain-extenders. Lap shear adhesion tests of the CEPUs exposed to TBAF revealed reductions in shear strength of up to 65% for both aluminum and glass substrates, from 2.
View Article and Find Full Text PDFACS Omega
January 2025
School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004, China.
In the process of zinc hydrometallurgy, the content of fluorine in zinc sulfate solution directly affects the stripping of the zinc plate, which easily leads to the deterioration of working conditions. It not only has a serious impact on the entire zinc hydrometallurgical system but also causes huge economic losses. Especially in the process of zinc secondary resource utilization, the concentration of fluoride ions in the electrolyte exceeds the control standard of smelting enterprises, which has become a long-term technical challenge in the smelting industry.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
All Sum Research Center Ltd., Mississauga, Ontario, Canada.
Objective: This study aims to evaluate extrinsic tooth stain removal and whitening efficacy of two experimental dentifrices containing (i) 5% sodium tripolyphosphate (STP)/1% micronized alumina or (ii) 5% STP/1% micronized alumina with abrasive silica (ED2) compared to a regular fluoride dentifrice (RFD) following 8 weeks of use.
Materials And Methods: This was a single-center, randomized, controlled, blind, three-arm, stratified, parallel-group study. Eligible participants underwent clinical assessment of stain on the facial/lingual surfaces of maxillary and mandibular teeth using the modified Lobene stain index (MLSI), and shade of the facial surfaces of the central and lateral maxillary incisors using the VITA Bleachedguide 3D-Master (VITA) shade guide.
Int J Biol Macromol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!