Extracting coronary artery calcium (CAC) scores from contrast-enhanced computed tomography (CT) images using dual-energy (DE) based material decomposition has been shown feasible, mainly through patient studies. However, the quantitative performance of such DE-based CAC scores, particularly per stenosis, is underexamined due to lack of reference standard and repeated scans. In this work we conducted a comprehensive quantitative comparative analysis of CAC scores obtained with DE and compare to conventional unenhanced single-energy (SE) CT scans through phantom studies. Synthetic vessels filled with iodinated blood mimicking material and containing calcium stenoses of different sizes and densities were scanned with a third generation dual-source CT scanner in a chest phantom using a DE coronary CT angiography protocol with three exposures/CTDIvol: auto-mAs/8 mGy (automatic exposure), 160 mAs/20 mGy and 260 mAs/34 mGy and 10 repeats. As a control, a set of vessel phantoms without iodine was scanned using a standard SE CAC score protocol (3 mGy). Calcium volume, mass and Agatston scores were estimated for each stenosis. For DE dataset, image-based three-material decomposition was applied to remove iodine before scoring. Performance of DE-based calcium scores were analyzed on a per-stenosis level and compared to SE-based scores. There was excellent correlation between the DE- and SE-based scores (correlation coefficient r: 0.92-0.98). Percent bias for the calcium volume and mass scores varied as a function of stenosis size and density for both modalities. Precision (coefficient of variation) improved with larger and denser stenoses for both DE- and SE-based calcium scores. DE-based scores (20 mGy and 34 mGy) provided comparable per-stenosis precision to SE-based (3 mGy). Our findings suggest that on a per-stenosis level, DE-based CAC scores from contrast-enhanced CT images can achieve comparable quantification performance to conventional SE-based scores. However, DE-based CAC scoring required more dose compared with SE for high per-stenosis precision so some caution is necessary with clinical DE-based CAC scoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183065PMC
http://dx.doi.org/10.1088/1361-6560/aad9beDOI Listing

Publication Analysis

Top Keywords

cac scores
16
de-based cac
16
scores
12
se-based scores
12
coronary artery
8
artery calcium
8
computed tomography
8
unenhanced single-energy
8
single-energy scans
8
scores contrast-enhanced
8

Similar Publications

: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. : Use network pharmacology to identify targets and pathways of GQD.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the feasibility and accuracy of non-electrocardiogram (ECG)-triggered chest low-dose computed tomography (LDCT) with a kV-independent reconstruction algorithm in assessing coronary artery calcification (CAC) degree and cardiovascular disease risk in patients receiving maintenance hemodialysis (MHD).

Methods: In total, 181 patients receiving MHD who needed chest CT and coronary artery calcium score (CACS) scannings sequentially underwent non-ECG-triggered, automated tube voltage selection, high-pitch chest LDCT with a kV-independent reconstruction algorithm and ECG-triggered standard CACS scannings. Then, the image quality, radiation doses, Agatston scores (ASs), and cardiac risk classifications of the two scans were compared.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) is the third leading cause of death worldwide, so prevention and early diagnosis play important roles to reduce mortality and morbidity. Traditional risk-score assessments were used to find the at-risk patients in order to prevent or early treatment of CAD. Adding imaging data to traditional risk-score systems will able us to find these patients more confidently and reduce the probable mismanagements.

View Article and Find Full Text PDF

Background: Coronary artery calcification (CAC) detected through chest computed tomography (CT) strongly predicts cardiovascular events in asymptomatic individuals undergoing primary prevention. Few studies with limited sample sizes have investigated the predictive value of CAC for cardiovascular complications in COVID-19. This study examined the impact of CAC on cardiovascular complications using a large-scale COVID-19 database.

View Article and Find Full Text PDF

Introduction: Premature advanced subclinical coronary atherosclerosis among young adults is an under-recognized and unique disease phenotype that has not been well characterized.

Methods: We used data from 44,047 participants with no prior CVD history (59.8% male) from the Coronary Artery Calcium (CAC) Consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!