Strong 14-3-3 zeta protein expression plays an important role in tumorigenesis, including in the maintenance of cell growth, resistance increase, and the prevention of apoptosis. In this study, we focus on two targets: (1) the expression of 14-3-3 zeta in the different grades of human astrocytoma (II-IV), (2) suppression of 14-3-3 zeta protein expression in glioblastoma derived astrocytes by 14-3-3 zeta shRNA lentiviral particles. The tissues of human astrocytoma were provided from 30 patients (ten of each grade of astrocytoma). Control tissues were obtained from the peritumoral brain zone of those patients with glioblastoma. The protein and mRNA expression levels of each astrocytoma grade were assessed via western blotting and RT-PCR, respectively. Results indicated that 14-3-3 zeta was significantly expressed in glioblastoma multiforme (grade IV) and 14-3-3 zeta expression levels enhanced according to the increase of astrocytoma malignancy. In the cellular study for knock down of the 14-3-3 zeta protein, surgical biopsy of glioblastoma was used to isolate primary astrocyte. Astrocytes were transduced with 14-3-3 zeta shRNA or non-targeted shRNA lentiviral particles. Furthermore, reduction of the 14-3-3 zeta protein expression in the astrocytes evaluated through qRT-PCR and western blot after transduction of 14-3-3 zeta shRNA lentiviral particles. Moreover, apoptosis properties, including DNA fragmentation and ratio increase of Bax/Bcl-2 were observed in astrocytes following reduction of 14-3-3 zeta protein expression. Further observation indicated that the mitochondrial pathway through release of cytochorome c and caspase-3 activity was involved in the apoptosis induction. Hence, this study demonstrates a key role of the 14-3-3 zeta protein in tumorigenesis but also indicates that 14-3-3 zeta can be considered as a target for the astrocytoma treatment specially glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-018-1476-5DOI Listing

Publication Analysis

Top Keywords

14-3-3 zeta
56
zeta protein
24
protein expression
16
zeta
14
14-3-3
13
zeta shrna
12
shrna lentiviral
12
lentiviral particles
12
apoptosis induction
8
human astrocytoma
8

Similar Publications

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an essential tool for gene expression analysis; choosing appropriate reference genes for normalization is crucial to ensure data reliability. However, most studies on osteogenic differentiation have had limited success in identifying optimal reference genes. To the best of our knowledge, no optimal reference genes in three-dimensional (3D) osteogenic differentiation culture experiments using human induced pluripotent stem cells (hiPSCs) have been identified.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most widespread neurodegenerative disorder. Recently, it was found that mucus extract from has beneficial effects on memory and cognitive processes in a rat scopolamine model of AD. The present study elucidated the mechanisms of action of standardized mucus snail extract (SE) enriched with a fraction above 20 kDa on Alzheimer-type dementia in rats.

View Article and Find Full Text PDF

14-3-3s constitute a group of proteins belonging to the phosphoserine/phosphothreonine family that are involved in the regulation of several physiological pathways by interacting with several client proteins. All the eukaryotic cells are known to possess 14-3-3 isoforms. In addition, 14-3-3s isolated from different eukaryotic cells share high sequence homology with each other.

View Article and Find Full Text PDF

Divergent Heat Stress Responses in and .

Insects

September 2024

Food Futures Institute, Murdoch University, Perth, WA 6150, Australia.

Article Synopsis
  • *This study investigates how Qfly's molecular response to heat stress differs from that of Medfly by analyzing gene expression changes before and after heat treatment.
  • *Only three genes—HSP70, HSP68, and 14-3-3 zeta protein—were found in common between the two species, but their expression patterns varied, suggesting different regulatory mechanisms and potential implications for pest control strategies.
View Article and Find Full Text PDF

Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!