In rose (Rosa hybrida), flower senescence is accelerated by ethylene and delayed by cytokinins (CTKs). However, the effectors that regulate these processes are not currently understood. In this study, we identified an APETALA2/ethylene-responsive factor (AP2/ERF) gene, RhERF113, which was induced by ethylene and up-regulated during flower senescence in most floral organs, including sepal, petal, stamen and pistil. The virus-induced gene silencing (VIGS) of RhERF113 expression accelerated rose flower senescence, which was accompanied by a lower CTK content in the flowers. This accelerated senescence could be restored by exogenous CTK treatment. Moreover, the expression levels of genes related to CTK biosynthesis and signaling, including ISOPENTENYL TRANSFERASE 5 (RhIPT5), RhIPT8, HISTIDINE KINASE 2 (RhHK2), RhHK3, CYTOKININ RESPONSE REGULATOR 3 (RhCRR3), RhCRR5, RhCRR8, HOMEOBOX PROTEIN 6 (RhHB6) and PATHOGENESIS-RELATED 10.1 (RhPR10.1), were decreased in the RhERF113-silenced rose flowers. Taken together, our results demonstrate that RhERF113 delays ethylene-induced flower senescence by increasing the CTK content of the floral tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy162 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.
View Article and Find Full Text PDFAbscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.
View Article and Find Full Text PDFTransgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China.
Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!