In response to invasive stimuli macrophages secrete cachectin, a multipotent protein. Prominent among its biological effects is the ability to induce wasting (cachexia) as well as a lethal state of shock. The identity of cachectin and tumour necrosis factor has led to a new view of its therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1038/320584a0DOI Listing

Publication Analysis

Top Keywords

cachectin tumour
8
tumour necrosis
8
necrosis factor
8
factor sides
4
sides biological
4
biological coin
4
coin response
4
response invasive
4
invasive stimuli
4
stimuli macrophages
4

Similar Publications

Effects of moderate beer consumption on immunity and the gut microbiome in immunosuppressed mice.

Biosci Microbiota Food Health

August 2024

Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.

Beer contains a variety of bioactive ingredients and trace elements that can regulate bodily functions, and moderate consumption of beer can enhance immune responses. This study aimed to investigate the potential benefits of moderate consumption of alcoholic or non-alcoholic beer on the gut microbiome, immunity, and intestinal barrier function in immunosuppressed BALB/c mice induced by cyclophosphamide (CTX). Model mice with CTX-induced immunosuppression were administered alcoholic or non-alcoholic beer or galacto-oligosaccharides (GOS) for 28 consecutive days.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Introduction Acute appendicitis is a common surgical emergency that requires a timely and accurate diagnosis to prevent complications. Several laboratory markers have been assessed to improve the diagnostic accuracy of acute appendicitis, including C-reactive protein (CRP), white blood cell (WBC) count, and cytokines like interleukins and tumor necrosis factor-alpha. One less commonly used but potentially valuable marker is the mean platelet volume (MPV), which indicates the size of circulating platelets and has the potential to serve as a biomarker for inflammatory conditions.

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!