HPTLC - Bioautographic methods for selective detection of the antioxidant and α-amylase inhibitory activity in plant extracts.

MethodsX

School of Pharmacy and Applied Science, La Trobe Institute of Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia.

Published: July 2018

A high-performance thin-layer chromatography (HPTLC) method was developed for quantification of α-amylase inhibitory activity and stigmasterol content in ant plant extracts. An improved HPTLC method for the determination of total free radical scavenging activity in samples using DPPH• is also reported. For quantification of -amylase inhibitory activity, the developed HPTLC plate is dipped into an -amylase solution, and the bioautogram is then incubated at 25 °C for 30 min under humid conditions. For visualization of enzyme inhibitory activity, the starch test with an iodine indicator solution is used. The blue zone observed comes from the starch-iodine complex formed from starch that was not hydrolyzed by the amylase due to enzyme inhibition by the compound(s) present in the sample. The area of the blue zones was used to compare and quantify relative α-amylase inhibitory activity in different extracts. Location of the blue zones (hRF) on the plate was used to detect compounds that are responsible for the α-amylase inhibitory activity. Relative α-amylase activity was not related to the antioxidant activity, but was highly correlated with the stigmasterol content in the sample extracts ( = 0.95). Therefore, plant sterols present in the extracts might be responsible for α-amylase inhibitory activities in the extracts. •The developed method for quantification of α-amylase inhibitory activity provides an efficient and effective tool that can be used to screen, detect and quantify α-amylase inhibitory activity in plant extracts.•The proposed protocol is easy to run, involves minimal sample preparation, with multiple samples able to be analyzed in parallel on the same chromatographic plate, in a short time.•There were significant differences in -amylase inhibitory activity, stigmasterol content, and total free radical scavenging activity between methanol, ethanol, dichloromethane, and ethyl acetate ant plant extracts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082773PMC
http://dx.doi.org/10.1016/j.mex.2018.07.013DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
36
α-amylase inhibitory
28
activity
13
plant extracts
12
stigmasterol content
12
inhibitory
10
α-amylase
8
activity plant
8
hptlc method
8
quantification α-amylase
8

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.

View Article and Find Full Text PDF

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!