Formation of a protein corona influences the biological identity of nanomaterials.

Rep Pract Oncol Radiother

Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.

Published: May 2018

The development and testing of nanomaterials is an area of interest due to promising diagnostic and therapeutic applications in the treatment of diseases like cancer or cardiovascular disease. While extensive studies of the physicochemical properties of nanoparticles (NPs) are available, the investigation of the protein corona (PC) that is formed on NPs in biofluids is a relatively new area of research. The fact that few NPs are in clinical use indicates that the biological identity of NPs, which is in large part due to the PC formed in blood or other bodily fluids, may be altered in ways yet to be fully understood. Herein, we review the recent advances in PC research with the intent to highlight the current state of the field. We discuss the dynamic processes that control the formation of the PC on NPs, which involve the transient soft corona and more stable hard corona. Critical factors, like the environment and disease-state that affect the composition and stability of the PC are presented, with the intent of showcasing promising applications for utilizing the PC for disease diagnosis and the identification of disease-related biomarkers. This review summarizes the unique challenges presented by the nanoparticle corona and indicates future directions for investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084521PMC
http://dx.doi.org/10.1016/j.rpor.2018.05.005DOI Listing

Publication Analysis

Top Keywords

protein corona
8
biological identity
8
corona
5
nps
5
formation protein
4
corona influences
4
influences biological
4
identity nanomaterials
4
nanomaterials development
4
development testing
4

Similar Publications

Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.

View Article and Find Full Text PDF

Interaction of starch nanoparticles with digestive enzymes and its effect on the release of polyphenols in simulated gastrointestinal fluids.

Food Chem

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China. Electronic address:

This study investigates the interaction of amino-modified starch nanoparticles (NH-SNPs) and unmodified SNPs with pepsin and trypsin and the influence of the formation of protein coronas on the release of polyphenols. We discovered that NH-SNPs bound loosely to pepsin, while they bound tightly to trypsin, by quartz crystal microbalance with dissipation monitoring and zeta potential measurement. SNPs did not easily bind to the two digestive enzymes.

View Article and Find Full Text PDF

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.

View Article and Find Full Text PDF

Mesenchymal stromal cells-extracellular vesicles: protein corona as a camouflage mechanism?

Extracell Vesicles Circ Nucl Acids

November 2024

Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.

Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!