The genome-wide characterization of single nucleotide polymorphism (SNP) between cultivars or between inbred lines contributes to the creation of genetic markers that are important for plant breeding. Functional markers derived from polymorphisms within genes that affect phenotypic variation are especially valuable in plant breeding. Here, we report on the genome re-sequencing and analysis of the two parental inbred lines of the commercial F hybrid Chinese cabbage cultivar "W77". Through the genome-wide identification and classification of the SNPs and indels present in each parental line, we identified about 1,500 putative non-functional genes in each parent. We designed cleaved amplified polymorphic sequence (CAPS) markers using specific mutations found at RI restriction sites in the parental lines and confirmed their Mendelian segregation by constructing a linkage map using 96 F plants derived from the F hybrid cultivar, "W77". Our results and data will be a useful genomic resource for future studies of gene function and metagenomic studies in Chinese cabbage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081294PMC
http://dx.doi.org/10.1270/jsbbs.17124DOI Listing

Publication Analysis

Top Keywords

chinese cabbage
12
genome re-sequencing
8
parental lines
8
lines commercial
8
commercial hybrid
8
hybrid cultivar
8
inbred lines
8
plant breeding
8
cultivar "w77"
8
re-sequencing snp
4

Similar Publications

Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.

View Article and Find Full Text PDF

Scorpion insect neurotoxin LqhIT2 is a promising oral biopesticide: high-level preparation in Pichia pastoris and bioactivity assays.

Pest Manag Sci

December 2024

Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.

Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.

Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.

View Article and Find Full Text PDF

Background: The three-amino-acid-loop-extension (TALE) superfamily genes are broadly present in plants and play important roles in plant growth, development, and abiotic stress responses. So far, the TALE family in B.napus have not been systematically studied, especially their potential roles in response to abiotic stress.

View Article and Find Full Text PDF

, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!