Background: Cultured meat forms part of the emerging field of cellular agriculture. Still an early stage field it seeks to deliver products traditionally made through livestock rearing in novel forms that require no, or significantly reduced, animal involvement. Key examples include cultured meat, milk, egg white and leather. Here, we focus upon cultured meat and its technical, socio-political and regulatory challenges and opportunities.
Scope And Approach: The paper reports the thinking of an interdisciplinary team, all of whom have been active in the field for a number of years. It draws heavily upon the published literature, as well as our own professional experience. This includes ongoing laboratory work to produce cultured meat and over seventy interviews with experts in the area conducted in the social science work.
Key Findings And Conclusions: Cultured meat is a promising, but early stage, technology with key technical challenges including cell source, culture media, mimicking the in-vivo myogenesis environment, animal-derived and synthetic materials, and bioprocessing for commercial-scale production. Analysis of the social context has too readily been reduced to ethics and consumer acceptance, and whilst these are key issues, the importance of the political and institutional forms a cultured meat industry might take must also be recognised, and how ambiguities shape any emergent regulatory system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078906 | PMC |
http://dx.doi.org/10.1016/j.tifs.2018.04.010 | DOI Listing |
J Agric Food Chem
January 2025
Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
For centuries, meat has been a staple in the human diet, cherished for its rich protein content, vitamins, appealing texture, and umami flavor. The future supply is, however, tenuous as the global population continues to grow. Additional issues regarding animal welfare, adverse health effects, and the environmental impact of meat production have accelerated the development of meat analogues (MAs) over the last decades.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
This study investigated the difference in survival among Listeria monocytogenes (LM) 10403S (highly pathogenic strain) and M7 (low pathogenic strain) in sausage under a simulated digestive environment, and established intestinal organoids and macrophages co-culture model to further explore the virulence expression difference to intestinal cells between LM 10403S and M7 after in vitro gastrointestinal digestion. Results showed that, compared with LM M7, LM 10403S exhibited a high survival rate during in vitro digestion, which may be due to the increased expression of stress response-related genes. In addition, the expression of virulence genes in LM 10403S was significantly higher than in LM M7 under the gastrointestinal environment.
View Article and Find Full Text PDFBiomater Adv
January 2025
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.
View Article and Find Full Text PDFJ Nutr
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Cultured meat technology represents an innovative food production approach that enables the large-scale cultivation of animal cells to obtain muscle, fat, and other tissues, which are then processed into meat products. Compared to traditional meat production methods, cell-cultured meat may significantly reduce energy consumption by 7% to 45%, greenhouse gas emissions by 78% to 96%, land use by 99%, and water use by 82% to 96%. This technology offers several advantages, including a shorter production cycle and enhanced environmental sustainability, resource efficiency, and overall sustainability.
View Article and Find Full Text PDFFood Chem
January 2025
Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:
3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!