Background: Lung adenosquamous carcinoma (ASC) is a rare variant of non-small cell lung cancer (NSCLC) with poor prognosis. Certain biological differences may exist between these tumors and other common histological types of NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC). The phosphoinositide 3-kinase (PI3K) pathway, which links oncogenes and multiple receptor classes to essential cellular functions, is activated by phosphatase and tensin homolog (PTEN) loss. The PTEN loss has been suggested to induce programmed cell death ligand 1 (PD-L1) expression in various cancer types.

Objective: Here, we sought to determine the relationships between the expression of PTEN and PD-L1 in each component of ASC with ADC and SCC, and clinical parameters.

Material And Methods: Tissue microarrays of 148 cases of surgically resected lung ADC and 102 cases of SCC, as well as full sections from 28 ASC cases, were analyzed immunohistochemically for the expression of PTEN and PD-L1.

Results: PD-L1 expression was similar between the adenocarcinoma component of ASC vs. lung ADC and between the squamous component of ASC vs. lung SCC. PTEN loss was higher in lung ADC than in the adenocarcinoma component of ASC and significantly higher in lung SCC than in the squamous component of ASC. PD-L1 expression was higher in the squamous component than in the glandular component of the 28 ASC cases, but PTEN loss was similar. Overall, PTEN loss was higher in lung SCC than in lung ADC and both components of ASC. In lung SCC and glandular portions of ASC, PD-L1 expression levels were significantly associated with those of PTEN. The loss of PTEN correlated with smoking status in patients with lung ADC.

Conclusions: Our results implied that both squamous and glandular components of ASC may share the same oncogenic driver pathway for carcinogenesis. However, the squamous cell components of ASC likely escape the immune surveillance better than the glandular components due to higher PD-L1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.08.037DOI Listing

Publication Analysis

Top Keywords

pten loss
24
component asc
24
pd-l1 expression
20
lung adc
16
lung scc
16
lung
12
asc
12
loss pten
12
asc lung
12
squamous component
12

Similar Publications

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Background: High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog () is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization.

View Article and Find Full Text PDF

SHOC2 plays an oncogenic or tumor-suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer.

Life Med

June 2024

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.

SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs.

View Article and Find Full Text PDF

Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.

View Article and Find Full Text PDF

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!