AI Article Synopsis

  • Recent studies indicate that measuring fecal mRNA transcripts can be a less invasive alternative to the lactulose:mannitol test for assessing environmental enteric dysfunction in rural African children, particularly infants.
  • The study evaluated seven specific fecal host transcripts (CD53, CDX1, HLA-DRA, TNF, S100A8, MUC12, REG1A) and found that none were effective in predicting severe environmental enteric dysfunction, with only CDX1 and REG1A showing some correlation to gut permeability.
  • The prevalence of severe environmental enteric dysfunction in infants was found to be 14%, which is significantly lower than previously reported rates in older children, suggesting variations in vulnerability and possibly different underlying factors affecting gut health

Article Abstract

Recent studies have suggested that environmental enteric dysfunction can be assessed in rural African children by measuring levels of fecal mRNA transcripts. The field collection of fecal samples is less invasive and cumbersome than administration of the lactulose:mannitol test, which is typically used to assess environmental enteric dysfunction. This study sought to determine if, as in children aged 12-60 months, an array of seven fecal host transcripts (CD53, CDX1, HLA-DRA, TNF, S100A8, MUC12, and REG1A) could predict environmental enteric dysfunction in rural African infants. Host fecal transcript abundance was correlated to the percentage of lactulose (%L) excreted in the urine for 340 samples from Malawian children aged 6-12 months. Permeability was categorized as not severe (%L < 0.45) and severe (%L ≥ 0.45). This study found the prevalence of severe environmental enteric dysfunction to be 114/834 (14%), lower than what was previously reported for 12-60 months old children, 595/1521 (39%, P = 0.001). In linear regression analysis with the seven host transcripts, two were associated with %L: β coefficients of -1.843 ( P = 0.035) and 0.215 ( P = 0.006) for CDX1 and REG1A, respectively. The seven fecal host transcripts in a random forest model did not predict severe environmental enteric dysfunction. Future models utilizing different transcripts identified from an untargeted, agnostic assessment of all potential host transcripts could provide accurate predictions of environmental enteric dysfunction in infants. Impact statement Environmental enteric dysfunction (EED) is associated with reduced linear growth. The dual sugar absorption test has been used as a non-invasive method to determine the gut health of individuals. Alternative methods using fecal host mRNAs as predictors of the gut health are promising. In older children, we have determined that seven transcripts can predict the gut health in a random forest model. Our current study determined that the host fecal mRNA is abundant in infants and toddlers alike. Severe EED in rural Malawian children is less prevalent in infants than in young children. REG1A and CDX1 are associated with gut health. Fecal host mRNA may well be a means to assess gut health in African infants, but the panel of transcripts used to do this will differ from that in older children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180405PMC
http://dx.doi.org/10.1177/1535370218794418DOI Listing

Publication Analysis

Top Keywords

environmental enteric
16
enteric dysfunction
16
fecal host
8
aged 6-12
8
6-12 months
8
rural african
8
children aged
8
fecal
5
detection interpretation
4
interpretation fecal
4

Similar Publications

Machine learning reveals the dynamic importance of accessory sequences for outbreak clustering.

mBio

January 2025

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.

Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.

View Article and Find Full Text PDF

Unlabelled: The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury.

View Article and Find Full Text PDF

Acute gastroenteritis (AG) is a major illness in early childhood. Recent studies suggest a potential association between human bocavirus (HBoV) and AG. HBoV, a non-enveloped virus with a single-strand DNA genome, belongs to the Parvoviridae family.

View Article and Find Full Text PDF

The Prevalence of Enteric Viruses in Bivalve Molluscs in a Farming Area in Liguria, Northwest Italy.

Pathogens

December 2024

Department of Levante Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy.

Bivalve molluscs are filter-feeding organisms, capable of concentrating pathogenic microorganisms from the surrounding environment, thus contributing to the spread of viral pathogens, which they can transmit to humans, especially if eaten raw or undercooked. Although norovirus (NoV) and the hepatitis A virus (HAV) are considered the most common causes of foodborne infections, in recent years, other viruses with a zoonotic potential have been identified in shellfish, such as the hepatitis E virus (HEV), astrovirus (AsV), and aichi virus (AiV). The aim of the study was to investigate the presence of classical and emerging pathogenic enteric viruses in oysters () and mussels () from a mollusc farming area in the northwest of Italy, between April 2022 and March 2023.

View Article and Find Full Text PDF

Alleviating -Induced Intestinal Lesions in Chickens Using the Xylanase Xyn10C and Its Binary Cocktail with a Protease.

Animals (Basel)

January 2025

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

infection can induce necrotic enteritis and lead to significant economic loss to the chicken industry. In this study, a xylanase (Xyn10C), which effectively promotes the growth of probiotics, and a protease, which degrades the biofilm of were analyzed for their ability to alleviate -induced necrotic enteritis in broiler chickens. A total of 300 male AA chickens were divided into five treatment groups (control, no enzyme and no challenge; Cp, no enzyme, challenge; Xyn, Xyn10C plus challenge; Xyn+Am, Xyn10C+Amylase plus challenge; Xyn+Ap, Xyn10C+Alkaline protease plus challenge).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!