A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics.

J Am Chem Soc

Department of Chemistry & Biochemistry , The Ohio State University, 100 West 18th Avenue , Columbus , Ohio 43210 , United States.

Published: September 2018

In this study, we report the preparation, conformational dynamics, and recognition characteristics of novel molecular capsule 1 comprising a bowl-shaped framework conjugated to a tris(2-pyridylmethyl)amine (TPA) lid. With the assistance of experiment (H NMR spectroscopy) and theory (MM and DFT) we found that C symmetric 1 is poorly preorganized with three pyridines at the rim adopting a propeller-like orientation and undergoing P-to- M (or vice versa) stereoisomerization (Δ G < 8 kcal/mol, VT H NMR). Capsule 1 binds CH, CHCl, CHCl, CHCl, and CCl with K < 7 M. Protonation of 1 with HCl, however, gives [1·H]-Cl, with the solid-state structure showing the TPA lid being "flattened" and the N-H---Cl hydrogen-bonded group residing outside. Importantly, the P-to- M stereoisomerization would for [1·H]-Cl occur with Δ G = 11 kcal/mol (VT H NMR). Less dynamic and more preorganized [1·H]-Cl binds CH, CHCl, CHCl, CHCl, and CCl guests with a greater affinity ( K = 100-400 M) than 1. The results of our studies suggest that the complexation of increasingly larger guests takes place in an induced-fit fashion, with [1·H]-Cl (a) elongating along its vertical axis and concurrently potentially (b) twisting pyridines from P into M (and vice versa) orientation. The addition of EtN to [1·H]-Cl⊂CHCl causes deprotonation of the capsule and the release of CHCl with the process being fully reversed after the addition of HCl. Allosteric capsule 1 with unique structural and dynamic characteristics is expected to, in the future, assist the construction of complex molecular machines and smart functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b06190DOI Listing

Publication Analysis

Top Keywords

chcl chcl
16
molecular capsule
8
tpa lid
8
vice versa
8
kcal/mol nmr
8
binds chcl
8
chcl ccl
8
chcl
7
capsule
5
stimuli-responsive molecular
4

Similar Publications

Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment.

Int J Biol Macromol

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:

Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.

View Article and Find Full Text PDF

In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).

View Article and Find Full Text PDF

Optimization of Leaching of Lithium and Cobalt from Spent Lithium-Ion Batteries by the Choline Chloride-Citric Acid/Malonic Acid DES Using Response Surface Methodology.

Environ Res

January 2025

Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan Deemed to be University, Khandagiri Square, Bhubaneswar-751030, Odisha, India. Electronic address:

Deep eutectic solvents (DESs) are eco-friendly leaching agents which have emerged as potential candidate for recovery of valuable metals from spent LIBs (lithium-ion batteries). Earlier reports show use of more mount of chemicals, long leaching duration and less efficiency. The present work has been carried out to observe the leaching efficiency of two DES-water blend systems such as ChCl:CA(2:1) +30% HO and ChCl:MA(1:1)+20% HO for the leaching of Li and Co from cathodic material of spent LIBs using design of experiments and optimization through CCD (central composite design) of Response surface methodology(RSM) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!