Genome-wide evidences of bisphenol a toxicity using Schizosaccharomyces pombe.

Arch Pharm Res

Research Institute of Pharmaceutical Sciences (RIPS), Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.

Published: August 2018

To clarify reliable toxic mechanisms of bisphenol A (BPA), an endocrine disrupting chemical, we approached an alternative animal and whole genome analyses with the yeast knockout library (YKO) of Schizosaccharomyces pombe. As results, the 50% growth inhibition concentrations (GI) of BPA was approximately 600 μM and the YKO-three step screening revealed the top 10 target candidate genes including dbp2, utp18, srs1, tif224, use1, qcr1, etc. The screening results were confirmed in human embryonic stem cell (hES)-derived hepatic cells and HepG2 human liver cancer cells. We found BPA down-regulated UQCRC, the human orthlog of S. pombe- qcr1, as a part of the mitochondrial respiratory chain, in HepG2 cells and hESs during cell differentiation into hepatic cells. Therefore, BPA may induce mitochondrial dysfunction and disruption of differentiation by suppressing UQCRC1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-018-1058-7DOI Listing

Publication Analysis

Top Keywords

schizosaccharomyces pombe
8
hepatic cells
8
cells bpa
8
genome-wide evidences
4
evidences bisphenol
4
bisphenol toxicity
4
toxicity schizosaccharomyces
4
pombe clarify
4
clarify reliable
4
reliable toxic
4

Similar Publications

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components.

View Article and Find Full Text PDF

Fission yeast is an excellent model system that has been widely used to study the mechanism that control cell cycle progression. However, there is a lack of tools that allow to measure with high precision the duration of the different phases of the cell cycle in individual cells. To circumvent this problem, we have developed a fluorescent reporter that allows the quantification of the different phases of the cell cycle at the single-cell level in most genetic backgrounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!