Delaminated 2D sheets of MoSe were prepared by liquid phase exfoliation and were embedded over high surface area hydrogen exfoliated graphene (HEG) by a simple technique. The MoSe/HEG hybrid composite exhibits fast heterogeneous electron-transfer (HET) and a high electrochemically active surface area compared to only HEG. When employed for detection of NADH, it exhibits electrooxidation at a low potential of 150 mV (vs. Ag/AgCl) with high sensitivity of 0.0814 µA⋅µM⋅cm over a wide linear range (1-280 μM), good selectivity, and a low limit of detection (1 μM). The good performance of the composite is due to the homogeneously dispersed 2D sheets of MoSe over large-surface area HEG, which retain its electrochemical activity, prevents restacking, and acts as an electron transfer channel. On the basis of the above analytical requirements and its easy synthesis, the hybrid composite represents a robust material for electrochemical sensing. Graphical abstract Schematic of the 2D MoSe/HEG composite for electrochemical detection of NADH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-2946-8DOI Listing

Publication Analysis

Top Keywords

detection nadh
12
sheets mose
8
surface area
8
hybrid composite
8
mose sheets embedded
4
sheets embedded a high
4
a high surface graphene
4
surface graphene hybrid
4
hybrid amperometric
4
detection
4

Similar Publications

Photocatalytic Organic Semiconductor-Bacteria Imprinted Polymers for Highly Selective Determination of at the Single-Cell Level.

Anal Chem

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

This work utilized a combination of photocatalytic organic semiconductors and bacteria to create a photocatalytic organic semiconductor-bacterial biomixture system based on a bacteria imprinted polymers (OBBIPs-PEC) sensor, for the detection of with high sensitivity in "turn-on" mode at the single-cell level. This outstanding sensor arises from an integration of two different types of semiconductor materials to form heterojunctions. As well this sensor involves combining a semiconductor material with cationic side chains and an electron transport chain within a natural cellular environment, in which the cationic side chain of poly(fluorene--phenylene) organic semiconductor at 2-(4-mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione (PFP-OC@MNC) demonstrated the ability to penetrate the cell membrane of and interact with specific binding sites through electrostatic interactions.

View Article and Find Full Text PDF

Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.

View Article and Find Full Text PDF

Metabolomics approach to evaluate diclazuril-induced developmental toxicity in zebrafish embryo.

Aquat Toxicol

January 2025

Analytical Chemistry Laboratory, ASSIST Group, Main campus, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow India. Electronic address:

Anticoccidials, commonly used in veterinary medicine to treat coccidiosis in food-producing animals, particularly in poultry farming, are associated with potential environmental risks due to their excretion in manure and subsequent land-spreading. Diclazuril, a widely used anticoccidial, has been detected in groundwater, raising concerns about its impact on non-target species. This study investigates the developmental toxicity of diclazuril in zebrafish embryos over a 96-hour exposure period, utilizing biomarkers such as oxidative stress indicators and metabolomic profiles.

View Article and Find Full Text PDF

Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.

View Article and Find Full Text PDF

Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!