Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Precision public health is a novel set of methods to target disease prevention and mitigation interventions to high-risk subpopulations. We applied a precision public health strategy to syndromic surveillance for severe acute respiratory infection (SARI) in Uganda by combining spatiotemporal analytics with genomic sequencing to detect and characterize viral respiratory pathogens with epidemic potential.
Methods: Using a national surveillance network we identified patients with unexplained, influenza-negative SARI from 2010 to 2015. Spatiotemporal analyses were performed retrospectively to identify clusters of unexplained SARI. Within clusters, respiratory viruses were detected and characterized in naso- and oropharyngeal swab samples using a novel oligonucleotide probe capture (VirCapSeq-VERT) and high-throughput sequencing platform. Linkage to conventional epidemiologic strategies further characterized transmission dynamics of identified pathogens.
Results: Among 2901 unexplained SARI cases, 9 clusters were detected, accounting for 301 (10.4%) cases. Clusters were more likely to occur in urban areas and during biannual rainy seasons. Within detected clusters, we identified an unrecognized outbreak of measles-associated SARI; sequence analysis implicated cocirculation of endemic genotype B3 and genotype D4 likely imported from England. We also detected a likely nosocomial SARI cluster associated with a novel picobirnavirus most closely related to swine and dromedary viruses.
Conclusions: Using a precision approach to public health surveillance, we detected and characterized the genomics of vaccine-preventable and zoonotic respiratory viruses associated with clusters of severe respiratory infections in Uganda. Future studies are needed to assess the feasibility, scalability, and impact of applying similar approaches during real-time public health surveillance in low-income settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424078 | PMC |
http://dx.doi.org/10.1093/cid/ciy656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!