A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precision Surveillance for Viral Respiratory Pathogens: Virome Capture Sequencing for the Detection and Genomic Characterization of Severe Acute Respiratory Infection in Uganda. | LitMetric

Background: Precision public health is a novel set of methods to target disease prevention and mitigation interventions to high-risk subpopulations. We applied a precision public health strategy to syndromic surveillance for severe acute respiratory infection (SARI) in Uganda by combining spatiotemporal analytics with genomic sequencing to detect and characterize viral respiratory pathogens with epidemic potential.

Methods: Using a national surveillance network we identified patients with unexplained, influenza-negative SARI from 2010 to 2015. Spatiotemporal analyses were performed retrospectively to identify clusters of unexplained SARI. Within clusters, respiratory viruses were detected and characterized in naso- and oropharyngeal swab samples using a novel oligonucleotide probe capture (VirCapSeq-VERT) and high-throughput sequencing platform. Linkage to conventional epidemiologic strategies further characterized transmission dynamics of identified pathogens.

Results: Among 2901 unexplained SARI cases, 9 clusters were detected, accounting for 301 (10.4%) cases. Clusters were more likely to occur in urban areas and during biannual rainy seasons. Within detected clusters, we identified an unrecognized outbreak of measles-associated SARI; sequence analysis implicated cocirculation of endemic genotype B3 and genotype D4 likely imported from England. We also detected a likely nosocomial SARI cluster associated with a novel picobirnavirus most closely related to swine and dromedary viruses.

Conclusions: Using a precision approach to public health surveillance, we detected and characterized the genomics of vaccine-preventable and zoonotic respiratory viruses associated with clusters of severe respiratory infections in Uganda. Future studies are needed to assess the feasibility, scalability, and impact of applying similar approaches during real-time public health surveillance in low-income settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424078PMC
http://dx.doi.org/10.1093/cid/ciy656DOI Listing

Publication Analysis

Top Keywords

public health
16
viral respiratory
8
respiratory pathogens
8
severe acute
8
acute respiratory
8
respiratory infection
8
precision public
8
unexplained sari
8
respiratory viruses
8
detected characterized
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!