Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerical electromagnetic models that can mimic the dielectric properties of human tissues have been widely used for dosimetry-related studies in bio-electromagnetics, particularly for the calculation of electromagnetic field distribution inside the human body, which is subject specific. Reports indicated that considerable electromagnetic field variations may occur inside different human subjects even when existing differences in the geometrical dimensions of these subjects are minimal. Therefore, a subject-specific three-dimensional (3D) electromagnetic model is crucially required to calculate the electromagnetic field distribution accurately. However, the manner in which a precise subject-specific 3D electromagnetic model is established has not been fully explored in the literature yet. In this study, a new method was proposed for the establishment of a subject-specific 3D electromagnetic model using hybrid imaging modalities, with computed tomography (CT) and magnetic resonance (MR) images as sources. The exemplary application was provided by using the established subject-specific model to calculate the local specific absorption rates in MR imaging. Comparison studies indicated that detailed information was obtained using the proposed model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2018.07.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!