An 8-week feeding trial was conducted to evaluate the effects of dietary yeast hydrolysate and brewer's yeast supplementation on growth, immune-related genes expression and ammonia nitrogen stress resistance of Pacific white shrimp (Litopenaeus vannamei). Three isonitrogenous and isolipidic practical diets were formulated to contain 0% (control diet), 1% yeast hydrolysate and 1% brewer's yeast, respectively. 360 juvenile L. vannamei with an initial weight (0.88 ± 0.01 g) was randomly divided into 3 treatments in four replicates (30 shrimp per replicate). The results indicated that shrimp fed the diet containing 1% yeast hydrolysate had a significantly higher weight gain (WG), and specific growth rate (SGR) than that fed the control diet, and the lowest feed conversion ratio (FCR) was occurred in the 1% yeast hydrolysate supplementation group. Proximate composition in whole body and muscle among all treatments was not significantly influenced by the dietary yeast hydrolysate or brewer's yeast supplementation. The challenge test with ammonia nitrogen showed that lower cumulative survival was observed in those fed the control diet, and the highest cumulative survival was occurred at shrimp fed the 1% yeast hydrolysate supplementation. Shrimp fed the control diet had higher inflammation-related genes expression levels of tnf-α and il-1β in the intestine than those fed the diets supplemented with 1% yeast hydrolysate or 1% brewer's yeast, however, there was no significant difference in expression level of alp in intestine among all treatments. The relative expression levels of mTOR signal pathway genes (eif4ebp, eif4e1a, eif4e2 and p70s6k) were significantly up-regulated in the shrimp fed the diets supplemented with 1% yeast hydrolysate, and the lowest gene expression levels of eif4ebp, eif4e1a, eif4e2 and p70s6k in the intestine were occurred at the control diet. The highest expression levels of the immune-related genes (dorsal, relish, and proPO) in the intestine were observed at shrimp fed the 1% yeast hydrolysate supplementation, and the lowest expression levels of these genes were occurred at shrimp fed the control diet, however, there was no significant difference in gene expression of lysozyme among all treatments. The expression levels of penaeidin3a, crustin, proPO, and IMD in the hepatopancreas were significantly influenced by the dietary yeast hydrolysate, brewer's yeast or no yeast product supplementation, shrimp fed the 1% yeast hydrolysate supplementation had higher expression levels of these genes than those fed the control diet. The present study indicated that dietary 1% yeast hydrolysate or brewer's yeast supplementation could improve growth performance, enhance innate immunity, and strengthen resistance of ammonia nitrogen stress, and dietary 1% yeast hydrolysate supplementation provides better immunostimulatory effects than brewer's yeast of L. vannamei.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.08.020DOI Listing

Publication Analysis

Top Keywords

yeast hydrolysate
56
brewer's yeast
32
hydrolysate brewer's
28
control diet
28
shrimp fed
28
expression levels
28
dietary yeast
24
yeast
22
fed control
20
hydrolysate supplementation
20

Similar Publications

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including , are unable to utilize xylose effectively. To address this limitation, we engineered a strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the , , and genes, resulting in a strain with a strong promoter for and weaker promoters for and .

View Article and Find Full Text PDF

The extraction of hydroxycinnamic acids (HCADs) is a strategy for lignocellulosic biomass valorization due to their high value-added nature and the possibility of application as flavoring and antioxidants. This study proposes correlations between the composition and taxonomy of 28 globally available agro-industrial feedstocks with the production of HCADs using chemometric tools. Principal component analysis indicated strong correlations between ferulic acid release and hemicellulose type and content, especially in grass biomasses.

View Article and Find Full Text PDF
Article Synopsis
  • * Enzymatic hydrolysis significantly increased protein solubility from under 3.1% to about 16%, with up to 87.73% hydrolysis achieved, particularly with the 1:2 enzyme ratio treatment.
  • * The treated yeast proteins showed better functionality, including increased surface area, emulsion stability, and an enhanced amino acid profile, suggesting potential for various food applications.
View Article and Find Full Text PDF

is considered the most promising large-scale production strain with ethanol as the main product. The fermentation of is generally inhibited under various stress conditions. Various inhibitors in the hydrolysate severely inhibit yeast proliferation and yeast accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!