Salmonella enterica serovar Indiana (S. Indiana) was the most frequently reported foodborne pathogen, which has a broad host range including poultry, swine, and humans. Traditional methods used for the detection of S. Indiana from contaminated food products are time-consuming and labor-intensive. Therefore, rapid detection methods with high sensitivity and specificity are vitally important to prevent the spread of S. Indiana. In this study, we developed a nearly instrument-free, simple molecular method which incorporates cross-priming amplification (CPA) combined with a nucleic acid detection strip (NADS) for sensitive detection of S. Indiana. A set of CPA primers was designed based on S. Indiana specific nucleotide sequences and the specificity of CPA-NADS was tested against 42 bacterial strains. The results showed that this method was highly specific for detection of S. Indiana. The sensitivity of CPA-NADS was evaluated and compared with that of the serovar-specific PCR method and the real-time PCR method. The limit of detection of the CPA method was 8.997 fg/μL for genomic DNA and 6.2 × 10 CFU/mL for bacteria in pure culture. An application of the CPA assay was conducted with 90 inoculated specimens by S. Indiana. The accuracy of CPA-NADS was consistent with the results of the traditional culture-based methods in inoculated specimens. This method showed a higher sensitivity than the serovar-specific PCR method did and was more convenient to perform. In conclusion, we demonstrated that the CPA-NADS system offers high specificity, sensitivity, rapidity, and a simple detection tool for screening S. Indiana.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2018.08.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!