Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368477 | PMC |
http://dx.doi.org/10.1016/j.matbio.2018.08.002 | DOI Listing |
Objectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).
Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.
Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).
Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: In patients with acute respiratory distress syndrome, mechanical ventilation often leads to ventilation-induced lung injury (VILI), which is attributed to unphysiological lung strain (UPLS) in respiratory dynamics. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane receptor, senses mechanical signals. The Src/STAT3 pathway plays a crucial role in the mechanotransduction network, concurrently triggering pyroptosis related inflammatory responses.
View Article and Find Full Text PDFFront Public Health
January 2025
Xiangya School of Medicine, Central South University, Changsha, China.
Background: This study aimed to quantify the global impact of pneumoconiosis resulting from occupational exposure to particulate matter, gasses, and fumes from 1990 to 2021, utilizing data from the Global Burden of Disease Study 2021.
Method: The analysis evaluated the global, regional, and national burden of pneumoconiosis attributable to workplace exposure to particulate matter, gasses, and fumes. It explored variations in disease impact across different demographics, including age and gender, and analyzed the relationship between disease burden and the Socio-Demographic Index (SDI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!