NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice.

Mol Cell Endocrinol

Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.

Published: December 2018

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported in diabetic kidney, yet the potential role of NLRP3 inflammasome in DN is not well known. In this study, we explored the role of NLRP3 inflammasome on inflammation and fibrosis in diabetic kidney using NLRP3 knockout mice. Renal expression of NLRP3, caspase-1 p10, interleukin-18 (IL-18) and cleaved IL-1β was increased in diabetic wild-type (WT) mice at 24 weeks. NLRP3 knockout (KO) improved renal function, attenuated glomerular hypertrophy, glomerulosclerosis, mesangial expansion, interstitial fibrosis, inflammation and expression of TGF-β1 and connective tissue growth factor (CTGF), as well as the activation of Smad3 in kidneys of STZ-induced diabetic mice. In addition, NLRP3 KO inhibited expression of thioredoxin-interacting protein (TXNIP) and NADPH oxidase 4 (Nox4) and superoxide production in diabetic kidneys. The diabetes-induced increase in urinary level of 8-hydroxydeoxyguanosine (8-OHdG) was attenuated in NLRP3 KO mice. In vitro experiments, using HK-2 cells, revealed that high glucose (HG)-mediated expression of TXNIP and Nox4 was inhibited by transfection with NLRP3 shRNA plasmid or antioxidant tempol treatment. Silencing of the NLRP3 resulted in reduced generation of reactive oxygen species (ROS) in HK-2 cells under HG conditions. Furthermore, we also found exposure of IL-1β to HK-2 cells induced ROS generation and expression of TXNIP and Nox4. Taken together, inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis at least in part via suppression of oxidative stress in diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2018.08.002DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
16
nlrp3
12
inflammation fibrosis
12
renal inflammation
8
diabetic
8
fibrosis diabetic
8
diabetic mice
8
diabetic nephropathy
8
diabetic kidney
8
role nlrp3
8

Similar Publications

Erianin alleviates autoimmune myocarditis by suppressing the M1 polarization of macrophages via the NF-κB/NLRP3 signaling pathway.

Eur J Pharmacol

January 2025

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.

View Article and Find Full Text PDF

α-amanitin induces hepatotoxicity via PPAR-γ inhibition and NLRP3 inflammasome activation.

Ecotoxicol Environ Saf

January 2025

Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:

Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.

View Article and Find Full Text PDF

Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.

View Article and Find Full Text PDF

Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.

View Article and Find Full Text PDF

Gedunin Mitigates -Induced Skin Inflammation by Inhibiting the NF-κB Pathway.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.

: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!