Globally averaged riverine silicon (Si) concentrations and isotope composition (δSi) may be affected by the expansion and retreat of large ice sheets during glacial-interglacial cycles. Here we provide evidence of this based on the δSi composition of meltwater runoff from a Greenland Ice Sheet catchment. Glacier runoff has the lightest δSi measured in running waters (-0.25 ± 0.12‰), significantly lower than nonglacial rivers (1.25 ± 0.68‰), such that the overall decline in glacial runoff since the Last Glacial Maximum (LGM) may explain 0.06-0.17‰ of the observed ocean δSi rise (0.5-1.0‰). A marine sediment core proximal to Iceland provides further evidence for transient, low-δSi meltwater pulses during glacial termination. Diatom Si uptake during the LGM was likely similar to present day due to an expanded Si inventory, which raises the possibility of a feedback between ice sheet expansion, enhanced Si export to the ocean and reduced CO concentration in the atmosphere, because of the importance of diatoms in the biological carbon pump.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086862 | PMC |
http://dx.doi.org/10.1038/s41467-018-05689-1 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, Montana State University, Bozeman, MT 59717.
Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).
View Article and Find Full Text PDFScience
January 2025
Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.
Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen's flow law, in which strain rate depends on stress raised to a power of = 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous ( 1.
View Article and Find Full Text PDFHeliyon
December 2024
Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.
Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.
The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!