Plazomicin is a next-generation aminoglycoside that was approved by the US FDA in June 2018 for the treatment of complicated urinary tract infections (cUTIs), including pyelonephritis due to Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Proteus mirabilis. Plazomicin is active against multi-drug resistant (MDR) Enterobacteriaceae, where combination therapy is often used to treat infections caused by these pathogens. To determine synergy with other antibiotics, plazomicin was combined with antibiotics in checkerboard assays against MDR Enterobacteriaceae, including isolates with resistance to aminoglycosides and β-lactams; 10 Escherichia coli isolates, 8 Klebsiella spp. isolates, 10 Enterobacter spp. isolates, and 2 Citrobacter freundii isolates were evaluated. Plazomicin had potent activity against MDR Enterobacteriaceae, including aminoglycoside-resistant strains, with MIC ranges of 0.5 - 2 μg/mL against E. coli isolates, 0.12 - 8 μg/mL against Klebsiella spp. isolates, 0.25 - 2 μg/mL against Enterobacter spp. isolates, and 0.06 - 0.25 μg/mL against C. freundii isolates. Synergy between plazomicin and piperacillin/tazobactam or ceftazidime was observed by checkerboard studies and confirmed by time-kill assays. No combination showed antagonism. These studies indicate that plazomicin has potential as a monotherapy and as combination therapy for treating serious Gram-negative infections caused by MDR Enterobacteriaceae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diagmicrobio.2018.07.006 | DOI Listing |
Viruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFPathogens
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.
View Article and Find Full Text PDFMicroorganisms
January 2025
Experimental Zooprophylactic Institute of Apulia and Basilicata, 71121 Foggia, Italy.
The emergence of colistin-resistant in food products is a growing concern due to the potential transfer of resistance to human pathogens. This study aimed to assess the prevalence of colistin-resistant in raw and ready-to-eat food samples collected from two regions of Italy (Apulia and Basilicata) and to evaluate their resistance phenotypes and genetic characteristics. A total of 1000 food samples were screened, with a prevalence of 4.
View Article and Find Full Text PDFBiomolecules
January 2025
Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran.
The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!