Environmental goods are goods used or produced by industry that reduce air and water pollution and optimize the use of resources in production. Despite several Sustainable Development Goals explicitly calling for resilient and sustainable development, the diffusion of such goods is still low, especially in developing countries. Only sporadic research on the determinants of international trade of environmental goods is available. Based on the OECD classification of environmental goods, this gap is filled by adopting a gravity model, using trade data over a time span of 15 years from 1999 to 2014 across 71 countries. The central message of this paper is that environmental regulatory stringency is a key determinant of environmental goods trade. It is specifically provided evidence that a substitution effect exists between environmental regulation stringency and trade of environmental goods. In line with empirical literature on traditional gravity models, increased capacity to innovate, cultural ties, geographical proximity and financial uncertainty also play a role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.05.036 | DOI Listing |
Sensors (Basel)
December 2024
Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA.
Prehospital medical care is a major challenge for both civilian and military situations as resources are limited, yet critical triage and treatment decisions must be rapidly made. Prehospital medicine is further complicated during mass casualty situations or remote applications that require more extensive medical treatments to be monitored. It is anticipated on the future battlefield where air superiority will be contested that prolonged field care will extend to as much 72 h in a prehospital environment.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia.
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.
View Article and Find Full Text PDFToxics
December 2024
Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland.
Plants of the genus, known for their rich phytochemical profiles, are used in traditional Chinese, Korean, Japanese, and Indian medicine to treat various ailments, including inflammation, hypertension, diabetes, hyperlipidemia, and cancer. Due to the limited natural availability of these plants, there is a growing interest in utilizing in vitro culture techniques to produce their bioactive compounds sustainably. In this study, the effects are compared of Murashige and Skoog (MS), Woody Plant medium (WP), Gamborg B5 (B5), and Schenk and Hildebrandt (SH) basal media on growth, biomass accumulation, and polyphenolic compound production in shoot cultures of and .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!