Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent.

J Environ Manage

Environment Health Engineering Department & Social Determinants of Health Research Centre, Gonabad University of Medical Sciences, Gonabad, Iran; Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar, Iran. Electronic address:

Published: October 2018

Ammonium nitrate (NHNO) with explosive characteristics at high temperatures was used as a novel activating reagent to prepare a surface-engineered activated carbon derived from pistachio wood wastes (PWAC). PWAC was characterized and compared with commercial activated carbon (CAC) by textural and morphological properties, surface chemistry, crystal structure, and surface elemental composition. The results indicated that the optimal conditions of PWAC preparation to obtain the highest mercury adsorption capacity were pyrolysis temperature (800 °C), pyrolysis time (2 h), and impregnation ratio (5%). PWAC was of highly regular-shaped and well-developed pores and possessed a large surface area (1448 m/g) and high total pore volume (0.901 cm/g). The batch experiments indicated that the adsorption process of Hg(II) was strongly dependent on the solution pH and reached fast equilibrium at approximately 30 min. PWAC (202 mg/g) exhibited a significantly higher maximum adsorption capacity than commercial activated carbon (66.5 mg/g). Adsorbent-adsorbate dispersion interaction plays a major role in the adsorption mechanism, compared to the minor role played by pore filling and reduction mechanism. Overall, ammonium nitrate can be considered a newer activating reagent to prepare promising and low-cost PWAC for effectively Hg(II) removal from water media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.06.077DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
pistachio wood
8
novel activating
8
ammonium nitrate
8
activating reagent
8
reagent prepare
8
commercial activated
8
adsorption capacity
8
pwac
6
efficient mercury
4

Similar Publications

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

Mercury sequestration in alkaline salt low-level radioactive waste.

Environ Sci Pollut Res Int

January 2025

Savannah River National Laboratory, Aiken, SC, USA.

Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.

View Article and Find Full Text PDF

C5a-C5aR1 axis mediates lung inflammation and fibrosis induced by single-walled carbon nanotubes via promoting neutrophils recruitment.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China. Electronic address:

A mounting number of studies have been documenting strong pro-inflammatory and pro-fibrotic effects of carbon nanotube (CNT). However, the molecular mechanisms of single-walled CNT (SWCNT)-provoked lung injury remain to be elucidated. Here, we established a mice model of SWCNT-induced lung injury by intratracheal instillation and found that C5a-C5a receptor-1 (C5aR1) signaling was significantly activated along with abundant neutrophils recruitment in lungs at early phase post SWCNT administration, which were positively correlated with early lung inflammation and late pulmonary fibrosis.

View Article and Find Full Text PDF

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!