Effect of long-term manure slurry application on the occurrence of antibiotic resistance genes in arable purple soil (entisol).

Sci Total Environ

Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.

Published: January 2019

The application of animal manure is a highly recommended traditional agricultural practice for soils of relatively low fertility. However, for the farmland purple soils that are widely distributed in the upper Yangtze River region, little knowledge has been established in previous studies about the changes in the antibiotic resistome upon manure amendment. In the present study, the impact of long-term pig manure slurry application on the occurrence of antibiotic resistance genes (ARGs) and bacterial community was assessed in arable calcareous purple soil using high-throughput quantitative polymerase chain reaction and Illumina sequencing. Four treatments, including a non-fertilization control (CK) and pig manure (OM), OM plus mineral N fertilizer (OMN) and OM plus mineral NPK fertilizer (OMNPK) treatments were investigated. Across all the soil samples receiving different treatments, a total of 139 unique ARGs and 6 mobile genetic element genes were detected, with multidrug and beta-lactam the two most dominant types of ARGs. The results of the principal coordinate analysis (PCoA) suggest that the profiles of soil ARGs in the two treatments of OM combined with mineral fertilizer(s) (i.e., OMN and OMNPK) were similar to those in the control treatment, while the soil receiving only pig manure application had a different pattern of ARGs from the soils in the other three treatments. A clear reduction of soil ARGs was observed in the OM treatment. Significant and positive relationships were found not only among ARGs but also between mobile genetic elements (MGEs) and ARGs. However, no significant relationships were detected between ARG patterns and bacterial community composition. These results imply that the long-term application of pig manure slurry to purple soil does not lead to the prevalence of ARGs; however, the potential for the horizontal transfer of ARGs in calcareous purple soil should not be ignored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.08.028DOI Listing

Publication Analysis

Top Keywords

purple soil
16
pig manure
16
manure slurry
12
args
10
slurry application
8
application occurrence
8
occurrence antibiotic
8
antibiotic resistance
8
resistance genes
8
soil
8

Similar Publications

The genus comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes sp. TT6, isolated from human skin, with a focus on its metabolic and environmental adaptations.

View Article and Find Full Text PDF

pH-responsive composite konjac glucomannan/xanthan gum film incorporated lysozyme fibril for the monitoring of chicken breast freshness.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:

A pH responsive composite film was developed by incorporating cyanidin (CY) and egg white lysozyme fibril into konjac glucomannan (KGM) and xanthan gum (XG) matrix to monitor the chicken breast freshness in this work. The physicochemical properties of the films, especially pH sensitivity, evaluated by color difference and visual color change under different pH values, were first explored. The freshness changes of chicken breast sealed with the composite films were also analyzed.

View Article and Find Full Text PDF

The regulatory mechanism controlling nitrification inhibitors-induced mitigation of nitrification and NO-N leaching in alkaline purple soil.

J Environ Manage

January 2025

College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, 400716, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, China.

Nitrification inhibitors (NIs) are critical to reduce nitrogen (N) leaching losses. However, the efficacy of different NIs can be highly variable across soils and crop types, and a deeper understanding of the mechanistic basis of this efficiency variation, especially in purple soil under vegetable production, is lacking. To enrich this knowledge gap, the impact of different NIs amendment (3,4-dimethylpyrazole phosphate, DMPP; dicyandiamide, DCD; nitrapyrin, NP) on nitrification and the microbial mechanistic basis of controlling nitrate (NO-N) leaching of vegetable purple soil was explored in southwest China.

View Article and Find Full Text PDF

Introduction: Rock weathering is a fundamental process that shapes Earth's topography, soil formation, and other surface processes. However, the mechanisms underlying the influence of fertilizer application on weathering remain poorly understood, especially with respect to bacterial intervention.

Methods: In this study, purple parent rocks from Shaximiao Group (Js) and Penglaizhen Group (Jp) were selected to investigate the effects of fertilizer application on the bacterial community and weathering characteristics of these rock by leaching experiment.

View Article and Find Full Text PDF

To achieve good agricultural practices and maximize the economic yield of corn, farmers should reduce the use of inorganic fertilizers. A field experiment was conducted in the Chonnabot district, Khon Kaen province, Thailand, during the 2022 and 2023 growing seasons. The aim was to assess the impact of different organic fertilizers and their combinations on the growth and yield of commercial sweet corn ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!