Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acesulfame potassium (ACS) is a widely-used sweetener worldwide. Its presence has been demonstrated in diverse bodies of water. However, the deleterious effects this causes in aquatic organisms has not yet been identified, which generates controversy concerning the risks that ACS represents after its disposal into the bodies of water. Thus, the objective of this work was to evaluate if the exposure of ACS in environmentally-relevant concentrations was capable of producing oxidative stress in blood, liver, gill, brain and muscle of common carp (Cyprinus carpio). With this finality, the carp were exposed to two environmentally-relevant concentrations (0.05 and 149 μg L) at different exposure times (12, 24, 48, 72 and 96 h), having controls in the same conditions for each exposure time. Posteriorly, the following biomarkers of damage were evaluated: hydroperoxide content (HPC), level of lipoperoxidation (LPX) and protein carbonyl content (PCC), as well as the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The results showed that ACS produces significant increase in damage biomarkers evaluated in all organs, mainly in gill, brain and muscle, as well as significant changes in the activity of antioxidant enzymes in the same organs. Thus, it is concluded that ACS is capable of producing oxidative stress in common carp (Cyprinus carpio).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.08.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!