The terrestrial biogeochemical cycle of mercury has been widely studied because, among other causes, it presents a global distribution and harmful biotic interactions. Forested ecosystems shows great concentrations from Hg and Litterfall is known as the major contributor to the fluxes at the soil/air interface, through the superficial adsorption on the leaves and by the gas exchange of the stomatal pores. The understanding of which processes control the stage of Hg cycle in these ecosystems is still not totally clear. The influences of physiological and morphological parameters were tested against the Hg concentrations in the leaves of 14 endemic species of an evergreen tropical forest in south-eastern Brazil, and an exotic species from Platanus genus. Pathways were studied through leaf areas and growing tree parameters, where maximum rate of net photosynthesis (Pnmax), transpiration rate (E), stomatal conductance (Gs) were examined. The results obtained in situ indicated a positive correlation between Pnmax and the Hg concentration; Cedrela fissilis and Croton floribundus were the most sensitive species to the accumulation of Hg and the most photosynthetically active in this study. The primary productivity from Tropical forest should be a proxy of Hg deposition from atmosphere to soil, retained there while forests stand up, representing an environmental service of sequestration of this global pollutant. Therefore, forests and trees with great photosynthetic potential should be considered in predictions, budgets and non-geological soil content regarding the global Hg cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.07.120 | DOI Listing |
Sci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Coevolution of Land Use and Urbanisation, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; Department of Archaeology, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; School of Archaeology, University of the Philippines, Quezon City 1101, the Philippines. Electronic address:
The Amazon rainforest is characterized by a limited number of hyperdominant trees that play an oversized role in its ecosystems, nutrient cycle, and rainfall production. Some of these, such as the Brazil nut, appear to have been intensively exploited and dispersed by Indigenous populations since their earliest arrival in this part of South America around 13,000 years ago. However, the genetic diversity-and geographic structure-of these species remains poorly understood, as does their exact relationship with past human land use.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.
Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Jinghong 666303, China.
Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!