Receptors-for-Advanced-Glycation-End-products (RAGE) activate pro-inflammatory programs mediated by carboxymethyllysine (CML) and high-mobility-group-box1 protein (HMGB1). The soluble isoform sRAGE neutralizes RAGE-ligands preventing cardiovascular complications in conditions associated with increased sympathetic activation like hypertension and diabetes. The effects of sympathetic modulation on RAGE/sRAGE-balance and end-organ damage in metabolic syndrome on top of hypertension remains unknown. We hypothesized that increased sympathoadrenergic activity might lead to an unfavourable RAGE/sRAGE regulation. Renal denervation (RDN) was used to modulate sympathetic activation in obese spontaneously hypertensive rats (SHRobRDN) versus sham-operated obese spontaneously hypertensive rats (SHRob), their hypertensive lean controls (SHR) and non-hypertensive controls. Cardiac fibrosis was assessed by histological analysis and sRAGE/RAGE and ligand levels by Western blotting. Levels of CML and HMGB1 were highest in SHRob and were significantly lowered by RDN in serum (-44% and -45%) and myocardium (-25% and -52%). Myocardial RAGE was increased in SHR (+72% versus controls) and in SHRob (+68% versus SHR) while sRAGE decreased (-50% in SHR versus controls and -51% in SHRob versus SHR). RDN reduced myocardial RAGE expression. (-20%) and increased sRAGE levels in heart (+80%) and serum (+180%) versus sham-operated SHRob. Myocardial fibrosis correlated inversely with myocardial sRAGE content (r = -0.79; p = .004; n = 10). Myocardial sRAGE shedding active A-Disintegrin-And-Metalloprotease-10 (ADAM-10) was decreased in SHR (-33% versus controls) and in SHRob (-54% versus SHR), and was restored after RDN (+129% versus SHRob). Serum ADAM-10 activity was also decreased in SHRob (-66% versus SHR) and restored after RDN (+150% versus SHRob). In vitro, isoproterenol induced a ß1-adrenergic receptor mediated increase of RAGE expression in splenocytes (+200%) and decreased sRAGE secretion of splenocytes and cardiac fibroblasts (-50% and -49%) by ß2-adrenergic receptor stimulation mediated suppression of ADAM-10 activity. In conclusion, sympathetic activity affects sRAGE/RAGE-balance, which can be suppressed through sympathetic modulation by RDN, preventing RAGE-induced cardiac damage in hypertension with metabolic syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2018.08.003DOI Listing

Publication Analysis

Top Keywords

versus shr
16
metabolic syndrome
12
versus controls
12
versus
11
shrob
9
hypertension metabolic
8
sympathetic activation
8
sympathetic modulation
8
obese spontaneously
8
spontaneously hypertensive
8

Similar Publications

Background: Multiple factors have been described to influence the risk of acute or chronic graft-versus-host disease (aGVHD or cGVHD) after allogeneic hematopoietic cell transplantation (HCT), including underlying chronic myeloid leukemia (CML) and high-dose total body irradiation (TBI). However, the impact of the underlying disease or low-dose TBI on the risk of GVHD in the modern era has not been determined.

Objective: To determine risk factors for GVHD in the modern era in the setting of antithymocyte globulin (ATG)-based GVHD prophylaxis.

View Article and Find Full Text PDF

We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences.

View Article and Find Full Text PDF

Donor C1 Group KIR-ligand inferiority is linked to increased mortality in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide.

Cytotherapy

December 2024

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Background Aims: In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present.

Methods: We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170).

View Article and Find Full Text PDF

Purpose: Bevacizumab, an anti-VEGF monoclonal antibody, has become a mainstay therapeutic in the management of malignant glioma. It is unknown if the risk of intracranial hemorrhage (ICH), a major complication associated with bevacizumab use, is dose-dependent.

Methods: This was a single institution retrospective analysis of patients treated with bevacizumab for the management of gliomas between 2009 and 2022.

View Article and Find Full Text PDF

Introduction: In patients with pancreatic cancer, the risk of venous thromboembolism (VTE) is high compared to other cancer types, suggesting that tumor-intrinsic features drive hypercoagulability. Tumor gene expression analysis may help unravel the pathogenesis of VTE in these patients and help to identify high-risk patients.

Aim: To evaluate the association between tumor gene expression patterns and VTE in patients with pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!