A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions of organic acids with Campylobacter coli from swine. | LitMetric

Interactions of organic acids with Campylobacter coli from swine.

PLoS One

United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America.

Published: February 2019

Campylobacter coli is a bacterial species that is a major cause of diarrheal disease worldwide, and Campylobacter spp. are among the top 5 foodborne pathogens in the United States. During food production organic acids (OAs) are often used to remove bacteria from animal carcasses. The interactions of six OAs with 111 C. coli strains obtained from swine and retail pork chops were studied by determining the molar minimum inhibitory concentrations (MICMs) of the C. coli strains, and the pH at the MICMs. The Henderson-Hasselbalch equation was used to calculate the concentrations of the undissociated and dissociated OAs at the MICMs of the C. coli strains. The results for the 111 different C. coli strains obtained from different locations were treated as a single group for each OA since many of the C. coli strains behaved similarly to each different OA. Inhibition of C. coli was not dependent on pH or on the undissociated OA species, but C. coli inhibition correlated with the dissociated OA species. Therefore, if the concentration of the dissociated OAs decreases from optimum, one may then expect that C. coli bacteria would escape disinfection. The concentration of the dissociated OA should be carefully controlled in a carcass wash. We suggest maintaining a concentration of the dissociated acetic, butyric, citric, formic, lactic and propionic acids at 29, 23, 11, 35, 22 and 25 mM, respectively, when using a carcass wash with these OAs to remove C. coli bacteria. However, due to C. coli utilization of acetate, formate, lactate and propionate, these four OAs may not be the best choice to use for a carcass wash to remove C. coli contamination. Of the six OAs, citric acid was the most efficient at inhibiting C. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086449PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202100PLOS

Publication Analysis

Top Keywords

coli strains
20
coli
14
concentration dissociated
12
carcass wash
12
organic acids
8
campylobacter coli
8
oas remove
8
111 coli
8
micms coli
8
dissociated oas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!