We use a self-assembled two-dimensional Coulomb crystal of ∼70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a superradiant (ferromagnetic) and a normal (paramagnetic) phase. We experimentally implement slow quenches across the quantum critical point and benchmark the dynamics and the performance of the simulator through extensive theory-experiment comparisons which show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.040503 | DOI Listing |
J Phys Chem Lett
December 2023
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
The origin of amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale.
View Article and Find Full Text PDFJ Chem Phys
October 2023
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
The remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2].
View Article and Find Full Text PDFPhys Rev Lett
December 2022
QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany.
Using a structured light beam carrying orbital angular momentum, we demonstrate excitation of the center-of-mass motion of a single atom in the transverse direction to the beam's propagation. This interaction enables quantum control of atomic motion in all axes with a single beam direction, which leads to applications in quantum computing and simulations with ion crystals. Here we demonstrate all the key features required for these applications, namely, coherent dynamics and strong carrier suppression in a configuration with the ion centered in the beam, which allows for single ion addressing and also provides robustness against pointing instabilities.
View Article and Find Full Text PDFEntropy (Basel)
October 2022
Department of Physics, Fuzhou University, Fuzhou 350002, China.
J Phys Condens Matter
August 2022
School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
A proposal for simulating the Dicke-Lattice model in a mechanics-controlled hybrid quantum system is studied here. An array of coupled mechanical resonators (MRs) can homogeneously interact with a group of trapped Bose-Einstein condensates (BECs) via the gradient magnetic field induced by the oscillating resonators. Assisted by the classical dichromatic radio-wave fields, each subsystem with the BEC-MR interaction can mimic the Dicke type spin-phonon interaction, and the whole system is therefore extended to a lattice of Dicke models with the additional adjacent phonon-phonon hopping couplings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!