We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton polaritons confined in a micropillar cavity. The statistics are acquired by means of a photon-number-resolving transition edge sensor. We directly observe that the photon-number distribution evolves with the nonresonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows one to evaluate the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data are analyzed in terms of thermal-coherent states, which gives direct access to the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.047401 | DOI Listing |
In quantum communication protocols, the use of photon-number-resolving detectors could open new perspectives by broadening the way to encode and decode information and merging the properties of discrete and continuous variables. In this work, we consider a quantum channel exploiting a silicon-photomultiplier-based receiver and evaluate its performance for quantum communication protocols under three possible configurations, defined by different post-processing of the detection outcomes. We investigate two scenarios: information transmission over the channel, quantified by the mutual information, and continuous-variable quantum key distribution, quantified by the key generation rate.
View Article and Find Full Text PDFIn a strongly coupled cavity quantum electrodynamics (QED) system, the second-order correlation function g(τ) of the transmitted probe light from the cavity is determined by the nonlinearity of the atom in the cavity. Therefore, the system provides a platform for controlling the photon statistics by manipulating nonlinearity. In this paper, we experimentally demonstrate nonreciprocal quantum statistics in a cavity QED system with several atoms strongly coupled to an asymmetric optical cavity, which is composed of two mirrors with different transmittivities.
View Article and Find Full Text PDFWe present a specialized photon subtraction scheme that allows for the deterministic extraction of single photons from multiphoton states while preserving the input single-photon states unaltered. The proposed device integrates two Λ-type emitters with transitions selectively coupled to a single chiral waveguide through single photon Raman interaction (SPRINT). We develop a comprehensive theoretical model for the system using the input-output formalism within the SLH framework and conduct numerical simulations to analyze its interaction with traveling few-photon pulses of coherent light.
View Article and Find Full Text PDFSci Rep
June 2024
School of Physics and Astronomy, University of Glasgow, Glasgow, UK.
Cameras with single-photon sensitivities can be used to measure the spatial correlations between the photon-pairs that are produced by parametric down-conversion. Even when pumped by a single-mode laser, the signal and idler photons are typically distributed over several thousand spatial modes yet strongly correlated with each other in their position and anti-correlated in their transverse momentum. These spatial correlations enable applications in imaging, sensing, communication, and optical processing.
View Article and Find Full Text PDFJ Am Chem Soc
June 2024
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!