Neurodegenerative diseases pose a substantial socioeconomic burden on society. Unfortunately, the aging world population and lack of effective cures foreshadow a negative outlook. Although a large amount of research has been dedicated to elucidating the pathologies of neurodegenerative diseases, their principal causes remain elusive. Metal ion dyshomeostasis, proteopathy, oxidative stress, and neurotransmitter deficiencies are pathological features shared across multiple neurodegenerative disorders. In addition, these factors are proposed to be interrelated upon disease progression. Thus, the development of multifunctional compounds capable of simultaneously interacting with several pathological components has been suggested as a solution to undertake the complex pathologies of neurodegenerative diseases. In this review, we outline and discuss possible therapeutic targets in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis and molecules, previously designed or discovered as potential drug candidates for these disorders with emphasis on multifunctionality. In addition, underrepresented areas of research are discussed to indicate new directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.8b00138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!