Novel Zeolite-5A@MOF-74 Composite Adsorbents with Core-Shell Structure for H Purification.

ACS Appl Mater Interfaces

Department of Chemical and Biochemical Engineering , Missouri University of Science and Technology, Rolla , Missouri 65409-1230 , United States.

Published: September 2018

Hydrogen is considered as one of the most important clean and renewable energy sources for a sustainable energy future. However, its efficient and cost-effective purification still remains challenging. In this work, we report the development of novel zeolite@metal-organic framework (MOF) composites comprised of MOF-74 and zeolite-5A with core-shell structure for efficient purification of H. The composites were synthesized hydrothermally through the addition of zeolite particles with and without carboxyl functional groups to the MOF synthesis solution. The zeolite/MOF weight ratio was varied systematically to find the optimum composition based on the adsorption performance. The formation of zeolite@MOF composites was confirmed by various characterization techniques. Single-component adsorption isotherms of CO, CO, CH, N, and H over composites were measured at 25 °C to determine their equilibrium adsorption capacity. It was found that the zeolite-5A@MOF-74 with weight ratio of 5:95 exhibited a similar morphology to that of pristine MOF-74, but with higher surface area and total pore volume. Moreover, this composite showed 20-30% increase in CO, CO, CH, and N uptake than the bare MOF, which could be attributed to the formation of new mesopores at the MOF-zeolite interface. The estimated selectivity values for CO/H, CO/H, CH/H, and N/H were higher than those of the zeolite and/or MOF. Our results also indicated that surface modification of zeolite prior to composite formation does not enhance the adsorption capacities of the composites. Overall, the findings of this study suggest that the zeolite-5A@MOF-74 composites with core-shell structure are promising candidates for industrial H purification processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10494DOI Listing

Publication Analysis

Top Keywords

core-shell structure
12
weight ratio
8
composites
6
novel zeolite-5a@mof-74
4
zeolite-5a@mof-74 composite
4
composite adsorbents
4
adsorbents core-shell
4
purification
4
structure purification
4
purification hydrogen
4

Similar Publications

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

The use of hypoxia-activated prodrugs is a promising strategy to address the limitations of photodynamic therapy (PDT) caused by a hypoxic tumor microenvironment. However, the controlled release of these hypoxia-activated prodrugs during PDT remains a challenge. In this study, we present a metal-organic framework (MOF) with a core-shell structure that can achieve a high PDT efficacy and on-demand release of hypoxia-activated prodrugs (AQ4N) for hypoxic tumor therapy.

View Article and Find Full Text PDF

Triangular-shaped Cu-Zn-In-Se-based nanocrystals with narrow near infrared photoluminescence.

Nanoscale

January 2025

Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.

Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.

View Article and Find Full Text PDF

The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.

View Article and Find Full Text PDF

Design of an efficient magnetic brush solid acid and its catalytic use in organic reactions.

Sci Rep

January 2025

Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.

In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!