Preparation and reactivity of half-sandwich organic azide complexes of osmium.

Dalton Trans

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.

Published: August 2018

Organic azide complexes [Os(η5-C5H5)(κ1-N3R)(PPh3){P(OR1)3}]BPh4 (1, 2) [R = CH2C6H5 (a), CH2C6H4-4-CH3 (b), CH(CH3)C6H5 (c), C6H5 (d); R1 = Me (1), Et (2)] were prepared by allowing bromo-compounds [OsBr(η5-C5H5)(PPh3){P(OR1)3}] to react first with AgOTf and then with an excess of azide in toluene. Benzylazide complexes reacted in solution leading to imine derivatives [Os(η5-C5H5){κ1-NH[double bond, length as m-dash]C(R2)Ar}(PPh3){P(OR1)3}]BPh4 (3, 4) [R2 = H (a, b), CH3 (c); Ar = C6H5, C6H4-4-CH3; R1 = Me (3), Et (4)]. Phenylazide, on the other hand, reacted in solution affording the dinuclear dinitrogen complex [{Os(η5-C5H5)(PPh3)[P(OMe)3]}2(μ-N2)](BPh4)2 (5). Depending on the nature of the R substituent, the reaction of the p-cymene complex [OsCl2(η6-p-cymene)(PPh3){P(OEt)3}] with RN3 yielded imine [OsCl(η6-p-cymene){κ1-NH[double bond, length as m-dash]C(H)Ar}{P(OEt)3}]BPh4 (6) (Ar = C6H4-4-CH3) and amine derivatives [OsCl(η6-p-cymene)(κ1-NH2C6H5){P(OEt)3}]BPh4 (7). The complexes were characterised spectroscopically (IR, 1H, 31P, 15N NMR) and by the X-ray crystal structure determination of [{Os(η5-C5H5)(PPh3)[P(OMe)3]}2(μ-N2)](BPh4)2 (5).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02230eDOI Listing

Publication Analysis

Top Keywords

organic azide
8
azide complexes
8
reacted solution
8
bond length
8
preparation reactivity
4
reactivity half-sandwich
4
half-sandwich organic
4
complexes
4
complexes osmium
4
osmium organic
4

Similar Publications

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Cu-Catalyzed Relay Functionalization of Alkenes: Diverse Synthesis of Diazidated Quinazolinones and Polycyclic Imidazoles.

Org Lett

January 2025

Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

A Cu-catalyzed relay process for the preparation of diazidated quinazolinone and polycyclic imidazole derivatives in which readily available alkene-tethered substrates undergo an addition/cyclization/C(sp)-H functionalization of alkene sequences with high efficiency is described. Various functionalized N-heteropolycyclic compounds were readily prepared in good yields with a broad substrate scope. Moreover, the direct azidation of the α-C(sp)-H bond of the corresponding N-heterocycles has been demonstrated on the basis of mechanistic studies, which provide an alternative late-stage functionalization approach for the derivatization of N-heterocyclic scaffolds.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.

Macromol Rapid Commun

January 2025

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.

Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!