We report the beneficial effects of calcium infusions in a child with hereditary resistance to 1,25(OH)2D and alopecia. This patient after transient responsiveness to vitamin D derivatives became unresponsive to all therapy despite serum 1,25(OH)2D concentrations maintained at levels approximately 100-fold normal. A 7-mo trial with calcium infusions led to correction of biochemical abnormalities and healing of rickets. Bone biopsies (n = 3) showed a normal mineralization and the disappearance of the osteomalacia. Cultures of bone-derived cells demonstrated a lack of activation of 25-hydroxyvitamin D 24-hydroxylase and osteocalcin synthesis by 1,25(OH)2D3 (10(-9) and 10(-6) M). These results demonstrate that even in the absence of a normal 1,25(OH)2D3 receptor-effector system in bone cells, normal mineralization can be achieved in humans if adequate serum calcium and phosphorus concentrations are maintained; and calcium infusions may be an efficient alternative for the management of patients with this condition who are unresponsive to large doses of vitamin D derivatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC424571PMC
http://dx.doi.org/10.1172/JCI112483DOI Listing

Publication Analysis

Top Keywords

calcium infusions
16
normal mineralization
12
hereditary resistance
8
vitamin derivatives
8
concentrations maintained
8
calcium
5
normal
5
long-term nocturnal
4
nocturnal calcium
4
infusions
4

Similar Publications

Denosumab, an anti-RANKL antibody, induces bone metabolism to a low-turnover bone status by arresting osteoclast activity. Frequent adverse events include infusion reactions, fever and hypocalcaemia but not hypophosphataemia. We report a case of severe hypophosphataemia associated with secondary hyperparathyroidism following denosumab administration in a young boy with recurrent osteosarcoma who was successfully treated with evocalcet.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.

View Article and Find Full Text PDF

Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.

View Article and Find Full Text PDF

Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.

Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Article Synopsis
  • TRPC1 is a ion channel linked to cardiovascular issues, with increased expression observed in both treated vascular smooth muscle cells (VSMCs) and aortas of hypertensive mice.
  • Lack of TRPC1 in VSMCs significantly reduces AngII-induced effects like vasoconstriction, hypertension, and heart changes, indicating its crucial role in these processes.
  • The study identifies the EZH2-TRPC1-MEK/ERK pathway as a significant contributor to hypertension, suggesting that targeting TRPC1 or EZH2 could be effective in treating high blood pressure and related cardiovascular problems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!