VanR is a negative transcriptional regulator of bacteria that belongs to the PadR family and modulates the expression of vanillate transport and degradation proteins in response to vanillate. Although VanR plays a key role in the utilization of vanillate as a carbon source, it is barely understood how VanR recognizes its effector. Thus, our knowledge concerning the gene regulatory mechanism of VanR is limited. Here, we reveal the vanillate-binding mode of VanR through structural, biophysical, and mutational studies. Similar to other PadR family members, VanR forms a functional dimer, and each VanR subunit consists of an N-terminal DNA-binding domain (NTD) and a C-terminal dimerization domain (CTD). One VanR dimer simultaneously binds two vanillate molecules using two interdomain cavities, as observed in PadR. In contrast to these common features, VanR contains an additional α-helix, αi, that has not been found in other PadR family members. The αi helix functions as an interdomain crosslinker that mediates interactions between the NTD and the CTD. In addition, the VanR-specific αi helix plays a key role in the formation of a unique effector-binding site. As a result, the effector-binding mode of VanR is distinguishable from that of PadR in the location and accessibility of the effector-binding site as well as the orientation of its bound effector. Furthermore, we propose the DNA-binding mode and vanillate-mediated transcriptional regulation mechanism of VanR based on comparative structural and mutational analyses. DATABASES: The atomic coordinates and the structure factors for VanR (PDB ID 5Z7B) have been deposited in the Protein Data Bank, www.pdb.org.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14629DOI Listing

Publication Analysis

Top Keywords

vanr
13
padr family
12
plays key
8
key role
8
mechanism vanr
8
mode vanr
8
family members
8
αi helix
8
effector-binding site
8
padr
5

Similar Publications

Soil microbial fuel cells (MFCs) can control the horizontal transfer of antibiotic resistance genes (ARGs) by reducing the abundance of mobile genetic elements. However, little is known about the effect of soil MFCs on the horizontal transfer pathway of ARGs transduced by viruses. In this study, the average abundance of ARGs in soil MFCs was 11 % lower than that in the open-circuit control.

View Article and Find Full Text PDF

High performance and high stability in all-inorganic solution processed nanocrystal-based light-emitting diodes (LEDs) are highly attractive for large area devices compared to organic material-based LEDs. In this work, an inverted all-inorganic LED structure is designed to have an easy integration with thin-film transistors. Adopting robust inorganic materials such as Ni O nanoparticle films as a hole transport layer (HTL) is beneficial for the performance of LED.

View Article and Find Full Text PDF

and are opportunistic pathogens commonly found in the microbiota of humans and other animals as well as in the environment. This article presents the results of antimicrobial susceptibility testing using phenotypic methods (broth microdilution and standardized disk diffusion) on selected clinical, food, and wastewater isolates of and The isolates were divided into subgroups based on their sensitivity to the following antibiotics: vancomycin (VAN) and ciprofloxacin (CIP), and biocides triclosan (TCL) and chlorhexidine (CHX). The study also investigated in vitro virulence factors, including biofilm formation ability, cell surface hydrophobicity (CSH) and β-hemolysis, to explore aspects of pathogenesis.

View Article and Find Full Text PDF

The objective of this investigation is to ascertain the distinctive profile of the rhizospheric soil resistome within the Mecca region, while also evaluating the potential risks associated with the horizontal transfer of resistome determinants to the open environment and human clinical isolates. We have made metagenomic whole-genome shotgun sequencing for rhizospheric microbiomes of two endemic plants, namely and . The rhizospheric resistomes of the two plants and the abundance of antibiotic resistance genes (ARGs) were identified by cross-referencing encoded proteins with the comprehensive antibiotic resistance database (CARD).

View Article and Find Full Text PDF

The phylogenetic relationships of glycopeptide resistance proteins were investigated. The amino acid sequences of vanA, vanB, vanR and vanS were used as queries to search against bacterial genomes in the NCBI RefSeq database. Hits with >60% amino acid identity and >90% query coverage were aligned, and phylogenetic trees were reconstructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!