Temporally Programmed Disassembly and Reassembly of C3Ms.

Small

Laboratory of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MB, Eindhoven, the Netherlands.

Published: November 2018

Responsive materials, which can adapt and operate autonomously under dynamic conditions, are a stepping stone towards functional, life-like systems inspired by fueled self-assembly processes in nature. Complex coacervate core micelles (C3Ms) comprising oppositely charged macromolecules constitute a novel class of polymeric micelles ideally suited for use as responsive nanoscopic delivery vehicles of hydrophilic and hydrophobic cargo. To fully exploit their potential, it is important that the C3Ms form and fall apart in an autonomous fashion as orchestrated by dynamic cues in their environment. Herein a means to temporally program the self-regulated C3M coassembly pathway, using a modulated base-catalyzed feedback system, is presented. Incorporated in the C3Ms is a pH responsive polyfluorene-based conjugated polyelectrolyte (CPF) as a building block and trace amounts of a molecular sensor (doxorubicin HCl) as cargo, both of which report on micellar coassembly and disassembly via binding-induced fluorescence quenching. CPF additionally reports on the pH of its microenvironment as its pH-dependent conformational states are mirrored in the transitions of its vibronic bands. This experimental design enables one to monitor solution pH, C3M disassembly and reassembly, as well as cargo release and recapture noninvasively in a closed system with real time florescence experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201802089DOI Listing

Publication Analysis

Top Keywords

disassembly reassembly
8
c3ms responsive
8
temporally programmed
4
programmed disassembly
4
c3ms
4
reassembly c3ms
4
responsive materials
4
materials adapt
4
adapt operate
4
operate autonomously
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!