Introduction: Release of the neuromodulator acetylcholine into cortical circuits supports cognition, although its precise role and mechanisms of action are not well understood. Little is known about functional differences in cholinergic modulatory effects across cortical model systems, but anatomical evidence suggests that such differences likely exist because, for example, the expression of cholinergic receptors differs profoundly both within and between species.
Methods: In the primary visual cortex (V1) of macaque monkeys, cholinergic receptors are strongly expressed by inhibitory interneurons. Using dual-immunofluorescence confocal microscopy, we examine m1 muscarinic acetylcholine receptor expression by two subclasses of inhibitory interneurons-identified by their expression of the calcium-binding proteins calbindin and calretinin-in the middle temporal extrastriate area (MT) of the macaque.
Results And Conclusions: We find that the majority of calbindin-immunoreactive neurons (55%) and only few calretinin-immunoreactive neurons (10%) express the m1 acetylcholine receptor. These results differ from the pattern observed in V1 of the same species, lending further support to the notion that cholinergic modulation in the cortex is tuned such that different cortical compartments will respond to acetylcholine release in different ways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160643 | PMC |
http://dx.doi.org/10.1002/brb3.1071 | DOI Listing |
Transl Psychiatry
January 2025
Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.
View Article and Find Full Text PDFPharmacol Res
January 2025
Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:
Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000 Shandong, China. Electronic address:
Esmolol has been demonstrated to mitigate inflammation damage and T lymphocyte apoptosis in septic cardiomyopathy. It has been established that the activation of α7 nicotinic acetylcholine receptor (nAChR) by cluster of differentiation 4(CD4) T lymphocytes expressing choline acetyltransferase (ChAT) can prevent excessive inflammation and reduce splenocyte apoptosis in septic cardiomyopathy. Given the similar anti-inflammatory effects, we hypothesized that esmolol might be associated with α7 nAChR and thereby exert its cardioprotective functions.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.
The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Introduction/aims: Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!