Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ischemic postconditioning (PostC) reduces infarct size in healthy experimental models. However, if protective effects of PostC are abolished during early stages of atherosclerotic and if this is related with a disbalance in mitochondrial energetics and alterations in thioredoxin-1 (Trx1) is still unknown. The objectives were to generate a murine high-fat diet (HFD)-fed model that developed in a phenotype consistent with early stages of atherosclerosis to then evaluate whether HFD exposure increased oxidative stress and consequently abolished the cardioprotection conferred by PostC. We used C57/BL6 mice fed with control diet (CD) or HFD for 12 weeks. Isolated mice hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). For PostC group, after ischemia, six cycles of reperfusion/ischemia were performed (10 s per cycle) at the onset of reperfusion. In CD group, the PostC reduced infarct size (CD-I/R: 52.14 ± 2.8 vs. CD-PostC: 36.58 ± 1.8, P < 0.05) and increased phosphorylation of GSK3β (CD-PostC: 2.341 ± 1.03 vs. CD-Baseline: 0.923 ± 0.41 AUOD, P < 0.05), and this cardioprotection was abolished in HFD-exposed mice. HFD increased hydrogen peroxide levels, produced a shift towards an oxidized intracellular environment (GSSG/GSH), and increased Trx1 expression with higher fractions of oxidized protein. State 3 mitochondrial oxygen consumption in basal conditions decreased 24% in HFD-exposed mice and PostC improved state 3 values only in CD mice. Cellular redox state and mitochondrial bioenergetics were altered in HFD-exposed mice. We demonstrated that alterations in redox state at early stages of atherosclerosis abolished cardioprotective mechanisms, such as those induced by PostC, even with increased Trx1 levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-018-3421-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!