Chronic wounds and related infections cause physical and psychological distress in patients, increased mortality, disability and high health care costs. The healing process can be delayed by several factors and in particular by the risk of infections, which can be further complicated by the increasing number of antibiotic-resistant microorganisms. New approaches in wounds management have been encouraged, aiming at preventing infections and improving wound healing. In this scenario, silver has emerged as an ideal antimicrobial agent due to its recognized efficacy against bacteria, viruses and fungi. Moreover, silk and in particular silk sericin from Bombyx mori has demonstrated excellent biological properties and can be considered a good candidate for skin tissue engineering. In this study absorbable PLGA sutures were functionalized with silk sericin and, then, they were treated with silver through an in situ photochemical deposition technology in order to develop an antibacterial and regenerative biomedical device. Morphological analysis was performed by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDX) in order to evaluate the presence and distribution of silver deposited on the sutures. The stability and durability of the sericin/silver coatings were tested and the results were related to both antibacterial properties and sample degradation. The biological analyses also aimed at studying the biocompatibility and wound healing properties of the device, evaluating the synergistic effect between sericin and silver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-018-6142-5 | DOI Listing |
Molecules
November 2024
School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
Silk microfiber scaffolds have garnered increasing interest due to their outstanding properties, with degumming being the process used to extract the sericin from the cocoon. In the present study, an attempt to tune the biodegradation period of silk through degumming with various sodium borohydride (NaBH) concentrations and degumming times was studied. We considered the process, the number of baths used, and the salt concentration.
View Article and Find Full Text PDFBiomacromolecules
December 2024
CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal.
Silk sericin (SS) has been widely discarded as a waste by the silk textile industry during the degumming process to obtain fibroin. However, in the past decade, an in-depth understanding of its properties and functions turned it into a high added-value biomaterial for biomedical applications. Herein, we report the molecular design and development of sustainable supramolecular multilayered nanobiomaterials encompassing SS and oppositely charged chitosan (CHT) through a combination of self-assembly and electrostatically driven layer-by-layer (LbL) assembly technology.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China. Electronic address:
To achieve effective long-term synergistic treatment of inflammatory bowel disease (IBD) with probiotics, we developed a versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex. Inulin/TFA/SS nanoparticles were fabricated by inulin, trans-ferulic acid (TFA), and silk sericin (SS), and then loaded onto the surface of poly-l-lysine (PLL) and poly-glutamic acid (PGA)-coated Bifidobacterium longum (BL) to obtain BL@PLL-PGA-Inulin/TFA/SS NPs (BL@PP-NPs). This design simultaneously endowed the complex with excellent gastrointestinal resistance, antioxidant, and anti-inflammation abilities.
View Article and Find Full Text PDFBiomaterials
May 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China. Electronic address:
Cleft palate is one of the most prevalent congenital craniofacial birth defects in human congenital facial anomaly. Severe cleft palate is usually accompanied by alveolar bone defects (ABDs). Growth factors (GFs) are considered as desirable opportunity to promote the craniofacial healing post the surgery.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
The controlled co-assembly of biomacromolecules through tuneable interactions offers a simple and fascinating opportunity to assemble multiple molecules into a single entity with enhanced complexity and unique properties. Herein, our study presents a dynamic co-assembled system using the multistimuli responsive intrinsically disordered protein Rec1-resilin and the adhesive hydrophilic protein silk sericin (SS). We utilized advanced characterization techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and small/ultra-small angle neutron scattering (SANS/USANS) to elucidate the detailed co-assembly behavior of the system and its evolution over time and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!