Hesitant steps from the artificial skin to organ regeneration.

Regen Biomater

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Published: August 2018

This is a historical account of the steps, both serendipitous and rational, that led my group of students and colleagues at MIT and Harvard Medical School to discover induced organ regeneration. Our research led to methods for growing back in adult mammals three heavily injured organs, skin, peripheral nerves and the conjunctiva. We conclude that regeneration in adults is induced by a modification of normal wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077806PMC
http://dx.doi.org/10.1093/rb/rby012DOI Listing

Publication Analysis

Top Keywords

organ regeneration
8
hesitant steps
4
steps artificial
4
artificial skin
4
skin organ
4
regeneration historical
4
historical account
4
account steps
4
steps serendipitous
4
serendipitous rational
4

Similar Publications

Ecotoxicity of a Representative Urban Mixture of Rare Earth Elements to .

Toxics

December 2024

Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada.

Rare earth elements (REEs) are considered as emerging contaminants due to their use in the fabrication process of current technologies. As such, their aquatic toxicity, especially as a mixture, is not well understood, as it has been scarcely investigated. The purpose of this study was to shed light on the sublethal and lethal toxicity of a realistic mixture of five REE in .

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, Au NPs are an excellent component of various materials, enriching them with their unique features.

View Article and Find Full Text PDF

Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells.

Int J Mol Sci

December 2024

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness.

View Article and Find Full Text PDF

Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.

View Article and Find Full Text PDF

Depletion of Gibberellin Signaling Up-Regulates Transcription and Promotes Adventitious Root Formation in Leaf Explants.

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.

Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!