Although the mechanisms that precisely time initiation of chromosome replication in bacteria remain unclear, most clock models are based on accumulation of the active initiator protein, DnaA-ATP. During each cell division cycle, sufficient DnaA-ATP must become available to interact with a distinct set of low affinity recognition sites in the unique chromosomal replication origin, , and assemble the pre-replicative complex (orisome) that unwinds origin DNA and helps load the replicative helicase. The low affinity -DnaA-ATP interactions are required for the orisome's mechanical functions, and may also play a role in timing of new rounds of DNA synthesis. To further examine this possibility, we constructed chromosomal s with equal preference for DnaA-ADP or DnaA-ATP at one or more low affinity recognition sites, thereby lowering the DnaA-ATP requirement for orisome assembly, and measured the effect of the mutations on cell cycle timing of DNA synthesis. Under slow growth conditions, mutation of any one of the six low affinity DnaA-ATP sites in chromosomal resulted in initiation earlier in the cell cycle, but the shift was not equivalent for every recognition site. Mutation of τ2 caused a greater change in initiation age, suggesting its occupation by DnaA-ATP is a temporal bottleneck during orisome assembly. In contrast, during rapid growth, all origins with a single mutated site displayed wild-type initiation timing. Based on these observations, we propose that uses two different, DnaA-ATP-dependent initiation timing mechanisms; a slow growth timer that is directly coupled to individual site occupation, and a fast growth timer comprising DnaA-ATP and additional factors that regulate DnaA access to . Analysis of origins with paired mutated sites suggests that Fis is an important component of the fast growth timing mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070618PMC
http://dx.doi.org/10.3389/fmicb.2018.01673DOI Listing

Publication Analysis

Top Keywords

low affinity
20
recognition sites
12
dnaa-atp
8
affinity dnaa-atp
8
chromosome replication
8
affinity recognition
8
dna synthesis
8
orisome assembly
8
cell cycle
8
slow growth
8

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Bimetallic synergy in non-precious metal Mn/Ba-SSZ-13 zeolite for improving NO storage capacity at low temperatures.

J Hazard Mater

January 2025

Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:

Pd-zeolite is considered one of the most promising passive NO adsorber (PNA) materials for NO purification in diesel vehicles during cold start. Nevertheless, the scarcity and high cost of the precious metal Pd restrict the industrialisation of Pd-zeolites as PNA. This work developed a bimetallic Mn and Ba co-modified SSZ-13 as non-precious metal PNA material.

View Article and Find Full Text PDF

CtfAB from the extremely thermophilic bacterium, Thermosipho melanesiensis, has been used for in vivo acetone production up to 70°C. This enzyme has tentatively been identified as the rate-limiting step, due to its relatively low binding affinity for acetate. However, existing kinetic and mechanistic studies on this enzyme are insufficient to evaluate this hypothesis.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!