The exocrine pancreatic acinar cell is unique for its rapid protein synthesis and packaging in zymogen granules (ZGs). However, while crucial to the pathogenesis of pancreatitis, the signaling involved in the transit of proteins via the Golgi is poorly understood in these cells. Noting the evidence of c-Src in regulating transit of cargo via the Golgi in other systems, we explored this in acinar cells. Stimulation of ZG formation with dexamethasone activated Src and increased the Golgi area in acinar cells. c-Src localized to the microsomes of acinar cells on immunofluorescence and subcellular fractionation. While other Src family members had no effect on the Golgi markers P115 and GM130, active c-Src increased the Golgi area these stained, extending them into the ER. Src inhibition reduced amylase staining outside the Golgi and increased it in a stack like Golgi morphology. In vivo pharmacologic inhibition or acinar specific genetic deletion of c-Src reduced ZG number and staining of amylase in ZGs along with increasing amylase retention in the microsomal fraction. Morphologically this was associated with smaller Golgi stacks, and dilation of the endoplasmic reticulum. Therefore the role c-Src regulated Golgi function, ZG formation and microsomal zymogen transit in acinar cells needs to be explored in pancreatitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085363 | PMC |
http://dx.doi.org/10.1038/s41598-018-30370-4 | DOI Listing |
Aging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFPathol Int
January 2025
Department of Surgical Pathology, Kagoshima University Hospital, Kagoshima, Japan.
A male in his seventies presented with lung cancer in the right lower lobe. The surgically resected specimen revealed a pleomorphic carcinoma featuring an adenocarcinoma component with lepidic, acinar, and papillary patterns, alongside a spindle cell component spreading along the pulmonary artery wall, resembling intimal sarcoma. The spindle tumor cells were positive for keratins, TTF-1, napsin A, and vimentin, but negative for p40, CK14, desmin, alpha-smooth muscle actin, CDK4, and MDM2.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.
Purpose: To study the effects of 0.
Dev Dyn
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
Background: The pancreas exhibits diverse structures and roles across vertebrates. The pancreas has evolved to include both endocrine and exocrine cells, a change that occurred during the transition from fish to amphibian. This event emphasizes the evolutionary significance of amphibians.
View Article and Find Full Text PDFFront Immunol
January 2025
Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!