Purpose: G100 is a toll-like receptor 4 (TLR4) agonist that triggers innate and adaptive antitumor immune responses in preclinical models. This pilot study assessed the safety, efficacy, and immunologic activity of intratumoral (IT) administration of G100 in patients with Merkel cell carcinoma (MCC).
Patients And Methods: Patients with locoregional MCC ( = 3; cohort A) received neoadjuvant IT G100 (2 weekly doses at 5 μg/dose) followed by surgery and radiotherapy; patients with metastatic MCC ( = 7; cohort B) received 3 doses in a 6-week cycle and could receive additional cycles with/without radiotherapy.
Results: IT G100 was safe and feasible in both neoadjuvant and metastatic settings. Treatment-related adverse events were mostly grade 1 or 2 injection-site reactions. IT G100 led to increased inflammation in the injected tumors with infiltration of CD8 and CD4 T cells and activation of immune-related genes. These proinflammatory changes were associated with local tumor regression and appeared to promote systemic immunity. All 3 cohort A patients successfully completed therapy; 2 patients remain recurrence free at 44+ and 41+ months, including 1 with a pathologic complete response after G100 alone. In cohort B, 2 patients achieved sustained partial responses, both lasting 33+ months after 2 cycles of therapy.
Conclusions: In this first-in-human study, IT G100 induced antitumor immune responses, demonstrated acceptable safety, and showed encouraging clinical activity.See related commentary by Marquez-Rodas et al., p. 1127.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368904 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-18-0469 | DOI Listing |
Adv Sci (Weinh)
December 2024
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, 66123 Saarbrücken, Germany. Electronic address:
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression.
View Article and Find Full Text PDFCancer Lett
December 2024
Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China. Electronic address:
Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8 T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8 T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8 T cells, such as immune checkpoint inhibitors (ICIs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!