Actin filament formation plays a pivotal role in the development, regeneration and modulation of the morphologies and physiological functions of subcellular compartments and entire cells. All of these processes require tight temporal and spatial control of F-actin assembly. Recent work has shed new light on the control of actin filament formation by Ca as very fast, transient messenger allowing for defined responses to signal intensities spanning several orders of magnitude. Recent discoveries highlight that a small but rapidly growing set of actin nucleators and related proteins, i.e. factors that have the power to promote the formation of new actin filaments in cells, are tightly controlled by the Ca sensor protein CaM. We here review the cellular functions and the molecular mechanisms that couple Ca signaling to the cytoskeletal functions of these factors. This set of proteins currently includes one actin nucleator of the formin family (INF2), the WH2 domain-based actin nucleator Cobl and its ancestor protein Cobl-like as well as fesselin/synaptopodin-2/myopodin and myelin basic protein (MBP). Considering the mechanistic principles of Ca control of actin filament formation unveiled thus far and the diverse cell biological processes involving Ca signaling it is obvious that our understanding of the cell biological crosstalk of Ca transients with the in part highly specialized actin cytoskeletal structures observed in different cell types is only at its infancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.07.159 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFBackground: CHRFAM7A is a human-restricted gene associated with neuropsychiatric and neurodegenerative disorders. The translated CHRFAM7A protein incorporates into the α7 nicotinic acetylcholine receptor (α7nAChR) leading to a hypomorphic receptor. Mechanistic insight from isogenic iPSC derived neuronal and mononuclear cells demonstrated that CHRFAM7A affects Ca signaling and activates small GTPase Rac1 leading to an actin cytoskeleton gain of function.
View Article and Find Full Text PDFBackground: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.
Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).
Front Neurol
December 2024
Department of Physiology, University of Kentucky, Lexington, KY, United States.
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.
The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!