Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway.

BMC Complement Altern Med

School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China.

Published: August 2018

Background: Sotetsuflavone is isolated from Cycas revoluta Thunb., which has biological activity against tumors. However, the anti-proliferative effects of sotetsuflavone on A549 cells and its mechanism are not fully elucidated.

Methods: This study investigated the mechanisms of growth inhibition, cell cycle arrest and apoptosis in non-small cell lung cancer A549 cells induced by sotetsuflavone and evaluated whether sotetsuflavone can be safely utilized by humans as therapeutic agent.

Results: We found that sotetsuflavone had significant antiproliferative activity against A549 cells. At the same time, the reactive oxygen species (ROS) content increased while the mitochondrial membrane potential and the ratio of Bcl-2/Bax decreased. Cleaved caspase-3, cleaved caspase-9, cytochrome C and Bax expression increased, and Cyclin D1, CDK4, cleaved caspase-8 and Bcl-2 expression decreased. Interestingly, we demonstrated that sotetsuflavone could effectively inhibit the G0/G1 cycle progression, and then induce the endogenous apoptosis pathway. Our results show that sotetsuflavone could inhibit the growth of A549 cells by up-regulating intracellular ROS levels and causing the mitochondrial membrane potential to collapse, inducing G0/G1 phase arrest and endogenous apoptosis.

Conclusions: In short, we confirm that sotetsuflavone had an inhibitory effect on A549 cells and discovered that it causes apoptosis of A549 lung cancer cells. Sotetsuflavone may be used as a novel candidate for anti-tumor therapy in patients with lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085663PMC
http://dx.doi.org/10.1186/s12906-018-2300-zDOI Listing

Publication Analysis

Top Keywords

a549 cells
24
lung cancer
12
sotetsuflavone
10
apoptosis a549
8
mitochondrial membrane
8
membrane potential
8
a549
7
cells
7
sotetsuflavone inhibits
4
inhibits proliferation
4

Similar Publications

Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.

Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.

View Article and Find Full Text PDF

Dried Apricot Polyphenols Suppress the Growth of A549 Human Lung Adenocarcinoma Cells by Inducing Apoptosis via a Mitochondrial-Dependent Pathway.

Foods

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells.

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

An efficient stereoselective synthesis of 10-hydroxy-10-(1-indol-3-yl)-9-(10)-phenanthrene derivatives was realized through an organocatalyzed Friedel-Crafts reaction of phenanthrenequinones and indoles using a (,)-dimethylaminocyclohexyl-squaramide as the catalyst. Under the optimized conditions, the desired chiral products were obtained in good yields (73-90%) with moderate to high ee values (up to 97% ee). Two pairs of synthesized enantiomers were subjected to evaluation of their antiproliferative activities on four types of human cancer cell lines and one human umbilical vein endothelial cell line using the CCK-8 assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!