Background/aims: RNA elements such as catalytic RNA, riboswitch, microRNA, and long non coding RNA (lncRNA) play central roles in many cellular processes. Studying diverse RNA functions require large quantities of RNA for precise structure analysis. Current RNA structure and function studies can benefit from improved RNA quantity and quality, simpler separation procedure and enhanced accuracy of structural analysis.
Methods: Here we present an optimized protocol for analyzing the structure of any RNA, including in vitro transcription, size-exclusion chromatography (SEC) based denaturing purification and improved secondary structure analysis by chemical probing.
Results: We observed that higher Mg2+, nucleoside triphosphate (NTP) concentrations and longer reaction duration can improve the RNA yield from in vitro transcription, specifically for longer and more complicated constructs. Our improved SEC-based denaturing RNA purification effectively halved the experiment duration and labor without introducing any contaminant. Finally, this study increased the accuracy and signal-to-noise ratio (SNR) of selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing for analyzing RNA structure.
Conclusion: Part or all of our modified method can improve almost any RNA-related study from protein-RNA interaction analysis to crystallography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000492512 | DOI Listing |
Blood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFChembiochem
January 2025
Institut Pasteur, Department of Structural Biology and Chemistry, 28 Rue du Dr. Roux, 75015, Paris, FRANCE.
Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China.
Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.
Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!