The role of the nfuA gene encoding an iron-sulfur ([Fe-S]) cluster-delivery protein in the pathogenic bacterium Pseudomonas aeruginosa was investigated. The analysis of nfuA expression under various stress conditions showed that superoxide generators, a thiol-depleting agent and CuCl2 highly induced nfuA expression. The expression of nfuA was regulated by a global [2Fe-2S] cluster containing the transcription regulator IscR. Increased expression of nfuA in the ΔiscR mutant under uninduced conditions suggests that IscR acts as a transcriptional repressor. In vitro experiments revealed that IscR directly bound to a sequence homologous to the Escherichia coli Type-I IscR-binding motifs on a putative nfuA promoter that overlapped the -35 element. Binding of IscR prevented RNA polymerase from binding to the nfuA promoter, leading to repression of the nfuA transcription. Physiologically, deletion of nfuA reduced the bacterial ability to cope with oxidative stress, iron deprivation conditions and attenuated virulence in the Caenorhabditis elegans infection model. Site-directed mutagenesis analysis revealed that the conserved CXXC motif of the Nfu-type scaffold protein domain at the N-terminus was required for the NfuA functions in conferring the stress resistance phenotype. Furthermore, anaerobic growth of the ΔnfuA mutant in the presence of nitrate was drastically retarded. This phenotype was associated with a reduction in the [Fe-S] cluster containing nitrate reductase enzyme activity. However, NfuA was not required for the maturation of [Fe-S]-containing proteins such as aconitase, succinate dehydrogenase, SoxR and IscR. Taken together, our results indicate that NfuA functions in [Fe-S] cluster delivery to selected target proteins that link to many physiological processes such as anaerobic growth, bacterial virulence and stress responses in P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084964 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202151 | PLOS |
Fish Shellfish Immunol
October 2024
Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China. Electronic address:
J Biol Chem
August 2024
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA. Electronic address:
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA.
View Article and Find Full Text PDFMicrolife
March 2023
I2M, CNRS, Aix-Marseille University, 13009 Marseille, France.
Iron-sulfur (Fe-S) clusters are important cofactors conserved in all domains of life, yet their synthesis and stability are compromised in stressful conditions such as iron deprivation or oxidative stress. Two conserved machineries, Isc and Suf, assemble and transfer Fe-S clusters to client proteins. The model bacterium possesses both Isc and Suf, and in this bacterium utilization of these machineries is under the control of a complex regulatory network.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2023
Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.
Glutaredoxins (Grxs), ubiquitous redox enzymes belonging to the thioredoxin family, catalyze the reduction of thiol-disulfide exchange reactions in a glutathione-dependent manner. A Pseudomonas aeruginosa Δ mutant exhibited hypersensitivity to oxidative stress-generating agents, such as paraquat (PQ) and cumene hydroperoxide (CHP). studies showed that P.
View Article and Find Full Text PDFACS Bio Med Chem Au
October 2022
Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an -octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical -adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!