In the context of type 1 diabetes research and the development of insulin-producing β-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary β-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new β-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084906 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201536 | PLOS |
Mol Oncol
January 2025
System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan.
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.
View Article and Find Full Text PDFClin Pharmacol Drug Dev
January 2025
Department of Pharmacometrics Modeling, A2-Ai LLC, Ann Arbor, MI, USA.
Certepetide (aka LSTA1 and CEND-1) is a novel cyclic tumor-targeting internalizing arginyl glycylaspartic acid peptide being developed to treat solid tumors. Certepetide is designed to overcome existing challenges in treating solid tumors by delivering co-administered anticancer drugs into the tumor while selectively depleting immunosuppressive T cells, enhancing cytotoxic T cells in the tumor microenvironment, and inhibiting the metastatic cascade. A population pharmacokinetic (PK) analysis was conducted to characterize the concentration-time profile of patients with metastatic exocrine pancreatic cancer receiving certepetide in combination with nab-paclitaxel and gemcitabine, and to investigate the effects of clinically relevant covariates on PK parameters.
View Article and Find Full Text PDFGut
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:
Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.
View Article and Find Full Text PDFLife Sci
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!