Finger millet (Eleusine coracana L.) is an important dry-land cereal in Asia and Africa because of its ability to provide assured harvest under extreme dry conditions and excellent nutritional properties. However, the genetic improvement of the crop is lacking in the absence of suitable genomic resources for reliable genotype-phenotype associations. Keeping this in view, a diverse global finger millet germplasm collection of 113 accessions was evaluated for 14 agro-morphological characters in two environments viz. ICAR-Vivekananda Institute of Hill Agriculture, Almora (E1) and Crop Research Centre (CRC), GBPUA&T, Pantnagar (E2), India. Principal component analysis and cluster analysis of phenotypic data separated the Indian and exotic accessions into two separate groups. Previously generated SNPs through genotyping by sequencing (GBS) were used for association mapping to identify reliable marker(s) linked to grain yield and its component traits. The marker trait associations were determined using single locus single trait (SLST), multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) approaches. SLST led to the identification of 20 marker-trait associations (MTAs) (p value<0.01 and <0.001) for 5 traits. While advanced models, MLMM and MTMM resulted in additional 36 and 53 MTAs, respectively. Nine MTAs were common out of total 109 associations in all the three mapping approaches (SLST, MLMM and MTMM). Among these nine SNPs, five SNP sequences showed homology to candidate genes of Oryza sativa (Rice) and Setaria italica (Foxtail millet), which play an important role in flowering, maturity and grain yield. In addition, 67 and 14 epistatic interactions were identified for 10 and 7 traits at E1 and E2 locations, respectively. Hence, the 109 novel SNPs associated with important agro-morphological traits, reported for the first time in this study could be precisely utilized in finger millet genetic improvement after validation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084814 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199444 | PLOS |
Pest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage.
View Article and Find Full Text PDFSci Data
January 2025
Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
Goosegrass, belonging to the genus Eleusine within the Chloridoideae subfamily, is often one of the problematic weeds with strong invasiveness, competing with crops for essential survival resources. Although a chromosome-level genome assembly of E. indica from China was published last year, the present research focuses on a population of E.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.
View Article and Find Full Text PDFBMC Genomics
January 2025
Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.
Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.
Plants (Basel)
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!